Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
416924415116676976604112 ~2009
4169429651833885930310 ~2006
4169565083833913016710 ~2006
416963462943364200141712 ~2010
4169738399833947679910 ~2006
4170009479834001895910 ~2006
4170054191834010838310 ~2006
4170131159834026231910 ~2006
41703780532502226831911 ~2007
41704550412502273024711 ~2007
4170546491834109298310 ~2006
4170744191834148838310 ~2006
4170792491834158498310 ~2006
4171203671834240734310 ~2006
41712896532502773791911 ~2007
41714169372502850162311 ~2007
417161011715852118444712 ~2009
41716485775840308007911 ~2008
41716726013337338080911 ~2008
4171750031834350006310 ~2006
4172002151834400430310 ~2006
41721840412503310424711 ~2007
41722270994172227099111 ~2008
4172259683834451936710 ~2006
41723161313337852904911 ~2008
Exponent Prime Factor Digits Year
41723891834172389183111 ~2008
4172573351834514670310 ~2006
4172768219834553643910 ~2006
4173137099834627419910 ~2006
41732503973338600317711 ~2008
4173266423834653284710 ~2006
4173371963834674392710 ~2006
417339416327544401475912 ~2010
4173519359834703871910 ~2006
41736061812504163708711 ~2007
4173723551834744710310 ~2006
4173729863834745972710 ~2006
41740011132504400667911 ~2007
41740739474174073947111 ~2008
4174153271834830654310 ~2006
417423742310018169815312 ~2009
4174699271834939854310 ~2006
4174745699834949139910 ~2006
41750496173340039693711 ~2008
4175197571835039514310 ~2006
4175477651835095530310 ~2006
41755793572505347614311 ~2007
4175582459835116491910 ~2006
4175604971835120994310 ~2006
4175618231835123646310 ~2006
Exponent Prime Factor Digits Year
41759414393340753151311 ~2008
41761300932505678055911 ~2007
4176369443835273888710 ~2006
4176458651835291730310 ~2006
4176491171835298234310 ~2006
41768704572506122274311 ~2007
41769203812506152228711 ~2007
41770112575847815759911 ~2008
4177133003835426600710 ~2006
4177312283835462456710 ~2006
4177401479835480295910 ~2006
4177422383835484476710 ~2006
4177467191835493438310 ~2006
4177661843835532368710 ~2006
4177667423835533484710 ~2006
4177714811835542962310 ~2006
417779976146791357323312 ~2010
41781799036685087844911 ~2008
4178435879835687175910 ~2006
4178455811835691162310 ~2006
4178546831835709366310 ~2006
41786623932507197435911 ~2007
41789675474178967547111 ~2008
4179101051835820210310 ~2006
4179193619835838723910 ~2006
Exponent Prime Factor Digits Year
4179231503835846300710 ~2006
4179476159835895231910 ~2006
4179646631835929326310 ~2006
4179880571835976114310 ~2006
4179982223835996444710 ~2006
4180100843836020168710 ~2006
4180161371836032274310 ~2006
4180306283836061256710 ~2006
4180735631836147126310 ~2006
4180752743836150548710 ~2006
41807628412508457704711 ~2007
4181030291836206058310 ~2006
4181150159836230031910 ~2006
4181341019836268203910 ~2006
4181349131836269826310 ~2006
4181386571836277314310 ~2006
4181851763836370352710 ~2006
4181867603836373520710 ~2006
41822214893345777191311 ~2008
4182234383836446876710 ~2006
4182242231836448446310 ~2006
4182389891836477978310 ~2006
41824133172509447990311 ~2007
41827319813346185584911 ~2008
4183257251836651450310 ~2006
Home
4.768.925 digits
e-mail
25-05-04