Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
47406236873792498949711 ~2008
47406334193792506735311 ~2008
474089473112326326300712 ~2009
4740925691948185138310 ~2007
47412075314741207531111 ~2008
4741453091948290618310 ~2007
47417169972845030198311 ~2008
4741769759948353951910 ~2007
47419969394741996939111 ~2008
4742415959948483191910 ~2007
4742497139948499427910 ~2007
4742513423948502684710 ~2007
4742560799948512159910 ~2007
47426101332845566079911 ~2008
4742619923948523984710 ~2007
4742629019948525803910 ~2007
4742737019948547403910 ~2007
47428002473794240197711 ~2008
474287868731302999334312 ~2010
4742951891948590378310 ~2007
4742968871948593774310 ~2007
47430386693794430935311 ~2008
47430996593794479727311 ~2008
47431130213794490416911 ~2008
47431484696640407856711 ~2009
Exponent Prime Factor Digits Year
4743559763948711952710 ~2007
47435798393794863871311 ~2008
4743597359948719471910 ~2007
47436933413794954672911 ~2008
4743883499948776699910 ~2007
47442582172846554930311 ~2008
474433123112335261200712 ~2009
47446348994744634899111 ~2008
47454847874745484787111 ~2008
47454874037592779844911 ~2009
47455035314745503531111 ~2008
4745650979949130195910 ~2007
4745684483949136896710 ~2007
4745840699949168139910 ~2007
47459852717593576433711 ~2009
4746177119949235423910 ~2007
4746185063949237012710 ~2007
4746374051949274810310 ~2007
47463907932847834475911 ~2008
47470195078544635112711 ~2009
4747385063949477012710 ~2007
4747626419949525283910 ~2007
4747789523949557904710 ~2007
47479003372848740202311 ~2008
47479810372848788622311 ~2008
Exponent Prime Factor Digits Year
4748310299949662059910 ~2007
4748365379949673075910 ~2007
4748409311949681862310 ~2007
47486436674748643667111 ~2008
4748683031949736606310 ~2007
4748694539949738907910 ~2007
47490042914749004291111 ~2008
4749255611949851122310 ~2007
47495724413799657952911 ~2008
47496347177599415547311 ~2009
474991472312349778279912 ~2009
474992308330399507731312 ~2010
4750075679950015135910 ~2007
475008202722800393729712 ~2010
475011461314250343839112 ~2009
4750214663950042932710 ~2007
4750236131950047226310 ~2007
4750404779950080955910 ~2007
47505856613800468528911 ~2008
475064056311401537351312 ~2009
47508664932850519895911 ~2008
47510356212850621372711 ~2008
47510550776651477107911 ~2009
4751119031950223806310 ~2007
47516840332851010419911 ~2008
Exponent Prime Factor Digits Year
4751695583950339116710 ~2007
4751764859950352971910 ~2007
4751846063950369212710 ~2007
4751967971950393594310 ~2007
47523157212851389432711 ~2008
4752338711950467742310 ~2007
4752444311950488862310 ~2007
4752578003950515600710 ~2007
47526236117604197777711 ~2009
47526907932851614475911 ~2008
4752957623950591524710 ~2007
47530062412851803744711 ~2008
4753227971950645594310 ~2007
4753280951950656190310 ~2007
47533837732852030263911 ~2008
4753446623950689324710 ~2007
475347490910457644799912 ~2009
4753554191950710838310 ~2007
47535618593802849487311 ~2008
4753909379950781875910 ~2007
4753969931950793986310 ~2007
4754136911950827382310 ~2007
4754174963950834992710 ~2007
47542553696655957516711 ~2009
4754335259950867051910 ~2007
Home
4.768.925 digits
e-mail
25-05-04