Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4047829223809565844710 ~2006
4048078451809615690310 ~2006
40482054773238564381711 ~2008
40482373218906122106311 ~2009
4048328519809665703910 ~2006
4048551911809710382310 ~2006
40490315416478450465711 ~2008
4049073419809814683910 ~2006
40492300372429538022311 ~2007
4049240771809848154310 ~2006
4049319143809863828710 ~2006
404980754973706497391912 ~2011
40498094999719542797711 ~2009
4049890079809978015910 ~2006
4049935199809987039910 ~2006
4050151019810030203910 ~2006
4050176051810035210310 ~2006
4050302843810060568710 ~2006
40504838412430290304711 ~2007
4050546719810109343910 ~2006
4050626603810125320710 ~2006
40506330914050633091111 ~2008
4050830579810166115910 ~2006
4050956111810191222310 ~2006
40510079717291814347911 ~2008
Exponent Prime Factor Digits Year
40512119594051211959111 ~2008
40514089932430845395911 ~2007
40515754572430945274311 ~2007
4051799819810359963910 ~2006
40521348314052134831111 ~2008
4052165879810433175910 ~2006
40521994439725278663311 ~2009
40522851372431371082311 ~2007
40523280173241862413711 ~2008
40526443572431586614311 ~2007
40526998913242159912911 ~2008
4053091739810618347910 ~2006
4053116663810623332710 ~2006
4053152123810630424710 ~2006
4053257531810651506310 ~2006
4053303011810660602310 ~2006
4053386723810677344710 ~2006
4053458159810691631910 ~2006
4053669563810733912710 ~2006
4053687623810737524710 ~2006
4053835319810767063910 ~2006
4053914003810782800710 ~2006
405414978719459918977712 ~2009
4054240259810848051910 ~2006
4054434539810886907910 ~2006
Exponent Prime Factor Digits Year
4054645319810929063910 ~2006
4054734191810946838310 ~2006
4055258579811051715910 ~2006
4055511263811102252710 ~2006
40555250693244420055311 ~2008
4055554631811110926310 ~2006
40558026074055802607111 ~2008
4056271319811254263910 ~2006
4056491759811298351910 ~2006
40573184932434391095911 ~2007
4057470251811494050310 ~2006
40575591732434535503911 ~2007
4057660511811532102310 ~2006
4057704971811540994310 ~2006
4057811003811562200710 ~2006
40580911372434854682311 ~2007
4058304479811660895910 ~2006
4058362739811672547910 ~2006
40586053514058605351111 ~2008
40586623812435197428711 ~2007
4058718179811743635910 ~2006
40587531132435251867911 ~2007
4058760983811752196710 ~2006
40590858372435451502311 ~2007
40592655477306677984711 ~2008
Exponent Prime Factor Digits Year
4059268859811853771910 ~2006
4059320003811864000710 ~2006
4059374219811874843910 ~2006
4059439799811887959910 ~2006
4059465191811893038310 ~2006
4059587351811917470310 ~2006
4059624311811924862310 ~2006
40598112012435886720711 ~2007
40600762876496122059311 ~2008
4060121003812024200710 ~2006
4060220771812044154310 ~2006
406025971742226701056912 ~2010
4060462691812092538310 ~2006
40605134812436308088711 ~2007
4060634471812126894310 ~2006
40606430532436385831911 ~2007
40606573313248525864911 ~2008
4060696439812139287910 ~2006
4061031983812206396710 ~2006
40611537532436692251911 ~2007
40611738197310112874311 ~2008
40612149612436728976711 ~2007
40615304095686142572711 ~2008
4061619071812323814310 ~2006
40617081772437024906311 ~2007
Home
4.724.182 digits
e-mail
25-04-13