Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
40728546732443712803911 ~2007
40733061772443983706311 ~2007
4073324939814664987910 ~2006
4073458211814691642310 ~2006
40739399418962667870311 ~2009
4074004223814800844710 ~2006
4074144923814828984710 ~2006
4074157943814831588710 ~2006
4074241043814848208710 ~2006
4074425783814885156710 ~2006
4074532211814906442310 ~2006
4074564239814912847910 ~2006
40747261975704616675911 ~2008
407478901318744029459912 ~2009
4074866639814973327910 ~2006
40749922677334986080711 ~2008
407499416913039981340912 ~2009
4075283291815056658310 ~2006
4075330223815066044710 ~2006
4075341323815068264710 ~2006
4075491011815098202310 ~2006
4075616003815123200710 ~2006
407566205339126355708912 ~2010
407581075119563891604912 ~2009
4075927391815185478310 ~2006
Exponent Prime Factor Digits Year
40760286593260822927311 ~2008
4076180939815236187910 ~2006
4076226443815245288710 ~2006
4076298911815259782310 ~2006
4076437979815287595910 ~2006
4077173003815434600710 ~2006
4077200651815440130310 ~2006
40772862239785486935311 ~2009
4077354023815470804710 ~2006
4077429371815485874310 ~2006
4077718871815543774310 ~2006
4077825959815565191910 ~2006
4077866603815573320710 ~2006
4078325039815665007910 ~2006
40783863293262709063311 ~2008
4078423931815684786310 ~2006
4078497743815699548710 ~2006
4078518371815703674310 ~2006
4078757471815751494310 ~2006
4079080991815816198310 ~2006
40794414593263553167311 ~2008
40795248074079524807111 ~2008
4079563679815912735910 ~2006
4079621459815924291910 ~2006
4079955263815991052710 ~2006
Exponent Prime Factor Digits Year
4080014651816002930310 ~2006
4080252623816050524710 ~2006
4080268631816053726310 ~2006
4080482963816096592710 ~2006
40806120012448367200711 ~2007
40806881693264550535311 ~2008
4080800891816160178310 ~2006
40808281812448496908711 ~2007
40808658012448519480711 ~2007
40809830412448589824711 ~2007
4081033919816206783910 ~2006
4081170851816234170310 ~2006
40811744573264939565711 ~2008
4081229291816245858310 ~2006
40812990713265039256911 ~2008
40813538332448812299911 ~2007
4081439783816287956710 ~2006
4081664183816332836710 ~2006
4081678103816335620710 ~2006
40818311412449098684711 ~2007
408198808746534664191912 ~2010
4082162471816432494310 ~2006
4082193371816438674310 ~2006
4082215211816443042310 ~2006
408223558719594730817712 ~2009
Exponent Prime Factor Digits Year
4082372303816474460710 ~2006
4082397659816479531910 ~2006
40826566612449593996711 ~2007
4083607343816721468710 ~2006
4083625211816725042310 ~2006
4083678479816735695910 ~2006
4083758363816751672710 ~2006
4083772883816754576710 ~2006
40837746473267019717711 ~2008
4083864443816772888710 ~2006
4084217183816843436710 ~2006
40842456012450547360711 ~2007
4084315811816863162310 ~2006
40843230732450593843911 ~2007
4084383311816876662310 ~2006
4084511663816902332710 ~2006
4084602419816920483910 ~2006
4084769303816953860710 ~2006
40847694593267815567311 ~2008
40847753772450865226311 ~2007
40850555476536088875311 ~2008
40851031073268082485711 ~2008
40852876994085287699111 ~2008
4085651639817130327910 ~2006
4085765279817153055910 ~2006
Home
4.768.925 digits
e-mail
25-05-04