Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1392323759278464751910 ~2002
1392377951278475590310 ~2002
1392409439278481887910 ~2002
1392424331278484866310 ~2002
1392446579278489315910 ~2002
13925198471392519847111 ~2004
1392559631278511926310 ~2002
139258795129244346971112 ~2007
13926250195849025079911 ~2006
1392650821835590492710 ~2004
1392707819278541563910 ~2002
1392710999278542199910 ~2002
1392778391278555678310 ~2002
1392808031278561606310 ~2002
13928244791392824479111 ~2004
1392859463278571892710 ~2002
1392990359278598071910 ~2002
1393050359278610071910 ~2002
1393054391278610878310 ~2002
13931116191114489295311 ~2004
1393124437835874662310 ~2004
1393133723278626744710 ~2002
1393144751278628950310 ~2002
1393149731278629946310 ~2002
1393153523278630704710 ~2002
Exponent Prime Factor Digits Year
1393244243278648848710 ~2002
139325229724242589967912 ~2007
1393255631278651126310 ~2002
1393325033835995019910 ~2004
1393378097836026858310 ~2004
1393394461836036676710 ~2004
13934041191114723295311 ~2004
1393497977836098786310 ~2004
1393589831278717966310 ~2002
1393591319278718263910 ~2002
1393607279278721455910 ~2002
1393621811278724362310 ~2002
1393638023278727604710 ~2002
13936386771114910941711 ~2004
1393639981836183988710 ~2004
13936524671393652467111 ~2004
1393665503278733100710 ~2002
1393682351278736470310 ~2002
1393739723278747944710 ~2002
1393757723278751544710 ~2002
1393758083278751616710 ~2002
1393814843278762968710 ~2002
1393838783278767756710 ~2002
1393840919278768183910 ~2002
1393896851278779370310 ~2002
Exponent Prime Factor Digits Year
1393910363278782072710 ~2002
13939234731951492862311 ~2005
1393925639278785127910 ~2002
1393936931278787386310 ~2002
1393937339278787467910 ~2002
1393946293836367775910 ~2004
1394054999278810999910 ~2002
1394082311278816462310 ~2002
1394082491278816498310 ~2002
1394099879278819975910 ~2002
1394120053836472031910 ~2004
1394142731278828546310 ~2002
1394178217836506930310 ~2004
13941950871115356069711 ~2004
1394217959278843591910 ~2002
1394254139278850827910 ~2002
1394319383278863876710 ~2002
1394402771278880554310 ~2002
1394434631278886926310 ~2002
1394436839278887367910 ~2002
13944435431394443543111 ~2004
1394489423278897884710 ~2002
1394493839278898767910 ~2002
1394518841836711304710 ~2004
13945361091115628887311 ~2004
Exponent Prime Factor Digits Year
1394536681836722008710 ~2004
1394618891278923778310 ~2002
1394624771278924954310 ~2002
13946353731952489522311 ~2005
1394662397836797438310 ~2004
1394664203278932840710 ~2002
1394672813836803687910 ~2004
1394678951278935790310 ~2002
1394733161836839896710 ~2004
1394744111278948822310 ~2002
1394750531278950106310 ~2002
1394810177836886106310 ~2004
13948182111115854568911 ~2004
13948334172231733467311 ~2005
1394860193836916115910 ~2004
13948741632231798660911 ~2005
1394965739278993147910 ~2002
1394980091278996018310 ~2002
1395028331279005666310 ~2002
13950663771953092927911 ~2005
1395077279279015455910 ~2002
1395087503279017500710 ~2002
1395133141837079884710 ~2004
1395133583279026716710 ~2002
1395181439279036287910 ~2002
Home
5.247.179 digits
e-mail
25-12-14