Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
40617320393249385631311 ~2008
4061916563812383312710 ~2006
4061917943812383588710 ~2006
4062180359812436071910 ~2006
4062231983812446396710 ~2006
4062281759812456351910 ~2006
4062348539812469707910 ~2006
4062411911812482382310 ~2006
40624651572437479094311 ~2007
40628844012437730640711 ~2007
40631489332437889359911 ~2007
40632718732437963123911 ~2007
40633032899751927893711 ~2009
4063337819812667563910 ~2006
4063686551812737310310 ~2006
40637021298940144683911 ~2009
40637668212438260092711 ~2007
40639002779753360664911 ~2009
4063988003812797600710 ~2006
4064087459812817491910 ~2006
4064247059812849411910 ~2006
40642550234064255023111 ~2008
40643740495690123668711 ~2008
4064542271812908454310 ~2006
4064585939812917187910 ~2006
Exponent Prime Factor Digits Year
40646702572438802154311 ~2007
4064765843812953168710 ~2006
4064837291812967458310 ~2006
406496313719511823057712 ~2009
40653531412439211884711 ~2007
4065370979813074195910 ~2006
4065466523813093304710 ~2006
40656111138944344448711 ~2009
4065662339813132467910 ~2006
4065868883813173776710 ~2006
40660900338945398072711 ~2009
40661611932439696715911 ~2007
4066209611813241922310 ~2006
4066291571813258314310 ~2006
4066365791813273158310 ~2006
4066785839813357167910 ~2006
40668176332440090579911 ~2007
40673519212440411152711 ~2007
40673736914067373691111 ~2008
4067659763813531952710 ~2006
40676720393254137631311 ~2008
4067710463813542092710 ~2006
406774031913016769020912 ~2009
40677636593254210927311 ~2008
4067788379813557675910 ~2006
Exponent Prime Factor Digits Year
4067843639813568727910 ~2006
4067950571813590114310 ~2006
4068112799813622559910 ~2006
4068175739813635147910 ~2006
4068191219813638243910 ~2006
40682683612440961016711 ~2007
40683097199763943325711 ~2009
406859994726852759650312 ~2010
40686506873254920549711 ~2008
4068711359813742271910 ~2006
4068748199813749639910 ~2006
4069087391813817478310 ~2006
4069099103813819820710 ~2006
4069107863813821572710 ~2006
40691224373255297949711 ~2008
4069440839813888167910 ~2006
4069501451813900290310 ~2006
4069598243813919648710 ~2006
406974013712209220411112 ~2009
4069848899813969779910 ~2006
4069926083813985216710 ~2006
4070003279814000655910 ~2006
4070075183814015036710 ~2006
40702515317326452755911 ~2008
40704648732442278923911 ~2007
Exponent Prime Factor Digits Year
4070908559814181711910 ~2006
40710157135699421998311 ~2008
40711494293256919543311 ~2008
407131302112213939063112 ~2009
40713319972442799198311 ~2007
4071784319814356863910 ~2006
4071848591814369718310 ~2006
4071973151814394630310 ~2006
40719804314071980431111 ~2008
4072419731814483946310 ~2006
4072437731814487546310 ~2006
4072564283814512856710 ~2006
40726971132443618267911 ~2007
40727075813258166064911 ~2008
40728546732443712803911 ~2007
40733061772443983706311 ~2007
4073324939814664987910 ~2006
4073458211814691642310 ~2006
40739399418962667870311 ~2009
4074004223814800844710 ~2006
4074144923814828984710 ~2006
4074157943814831588710 ~2006
4074241043814848208710 ~2006
4074425783814885156710 ~2006
4074532211814906442310 ~2006
Home
4.724.182 digits
e-mail
25-04-13