Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3694352939738870587910 ~2006
3694533743738906748710 ~2006
369454426324383992135912 ~2009
3694588811738917762310 ~2006
36947545372216852722311 ~2007
3694789859738957971910 ~2006
3694800911738960182310 ~2006
3694807559738961511910 ~2006
369483646111823476675312 ~2009
3695031803739006360710 ~2006
3695160923739032184710 ~2006
3695185751739037150310 ~2006
3695191319739038263910 ~2006
3695194883739038976710 ~2006
36953877012217232620711 ~2007
36954262012956340960911 ~2007
3695427899739085579910 ~2006
3695532023739106404710 ~2006
3695554223739110844710 ~2006
3695604743739120948710 ~2006
36956836372217410182311 ~2007
3695705411739141082310 ~2006
3695742731739148546310 ~2006
3695809391739161878310 ~2006
36959343372217560602311 ~2007
Exponent Prime Factor Digits Year
3696006911739201382310 ~2006
3696514271739302854310 ~2006
3696559043739311808710 ~2006
3696567071739313414310 ~2006
3696717851739343570310 ~2006
3696725423739345084710 ~2006
36970046992957603759311 ~2007
3697371299739474259910 ~2006
3697436903739487380710 ~2006
3697771631739554326310 ~2006
3697857239739571447910 ~2006
36980663572218839814311 ~2007
3698144231739628846310 ~2006
3698189399739637879910 ~2006
3698272619739654523910 ~2006
369831045714793241828112 ~2009
3698330711739666142310 ~2006
36983671732219020303911 ~2007
36983736892958698951311 ~2007
3698415131739683026310 ~2006
36984197092958735767311 ~2007
36986455393698645539111 ~2007
369867234717753627265712 ~2009
36988993672959119493711 ~2007
3698916239739783247910 ~2006
Exponent Prime Factor Digits Year
36989924772219395486311 ~2007
369904124919974822744712 ~2009
36992383812219543028711 ~2007
3699349631739869926310 ~2006
3699634931739926986310 ~2006
3699714719739942943910 ~2006
3699984479739996895910 ~2006
37001374732220082483911 ~2007
3700226279740045255910 ~2006
37002571938140565824711 ~2008
37002827833700282783111 ~2007
3700312919740062583910 ~2006
3700399991740079998310 ~2006
37004327113700432711111 ~2007
3700566203740113240710 ~2006
3700572671740114534310 ~2006
3700619171740123834310 ~2006
3700650623740130124710 ~2006
3700656383740131276710 ~2006
3701219759740243951910 ~2006
370128565711103856971112 ~2009
3701353163740270632710 ~2006
37014046998883371277711 ~2008
37015862115922537937711 ~2008
3701715383740343076710 ~2006
Exponent Prime Factor Digits Year
37017463938143842064711 ~2008
37017860638884286551311 ~2008
37019330412221159824711 ~2007
3702064343740412868710 ~2006
3702201383740440276710 ~2006
37022208532221332511911 ~2007
3702224483740444896710 ~2006
3702339383740467876710 ~2006
3702630023740526004710 ~2006
3702693311740538662310 ~2006
37028962792962317023311 ~2007
3702924119740584823910 ~2006
37031171772221870306311 ~2007
37033348012222000880711 ~2007
3703421531740684306310 ~2006
3703452323740690464710 ~2006
3703580999740716199910 ~2006
37036393012962911440911 ~2007
3703964783740792956710 ~2006
37041903892963352311311 ~2007
37043639872963491189711 ~2007
3704851583740970316710 ~2006
3704953691740990738310 ~2006
3704972291740994458310 ~2006
3705063443741012688710 ~2006
Home
4.768.925 digits
e-mail
25-05-04