Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
20070148331204208899911 ~2005
2007045191401409038310 ~2004
20070852111605668168911 ~2005
2007255119401451023910 ~2004
2007498683401499736710 ~2004
2007565559401513111910 ~2004
20075662696022698807111 ~2007
2007650591401530118310 ~2004
20077363333212378132911 ~2006
2007807419401561483910 ~2004
2007819311401563862310 ~2004
20078856411204731384711 ~2005
20078886011204733160711 ~2005
20081438811204886328711 ~2005
2008182131401636426310 ~2004
2008211951401642390310 ~2004
2008460171401692034310 ~2004
20085071871606805749711 ~2005
20085236394820456733711 ~2006
2008590959401718191910 ~2004
20086372911606909832911 ~2005
2008708511401741702310 ~2004
2008726691401745338310 ~2004
20087422131205245327911 ~2005
2008835963401767192710 ~2004
Exponent Prime Factor Digits Year
2008870631401774126310 ~2004
2008958543401791708710 ~2004
2008968371401793674310 ~2004
2008994951401798990310 ~2004
20090278371205416702311 ~2005
2009028071401805614310 ~2004
2009148203401829640710 ~2004
20092201791607376143311 ~2005
2009229899401845979910 ~2004
2009400251401880050310 ~2004
20094209294822610229711 ~2006
2009429771401885954310 ~2004
2009462639401892527910 ~2004
20095387016430523843311 ~2007
20095407591607632607311 ~2005
2009612771401922554310 ~2004
2009635583401927116710 ~2004
2009647751401929550310 ~2004
20096849691607747975311 ~2005
20097150134421373028711 ~2006
2009738411401947682310 ~2004
2009753423401950684710 ~2004
2009762399401952479910 ~2004
2009830211401966042310 ~2004
20098717611205923056711 ~2005
Exponent Prime Factor Digits Year
2010036551402007310310 ~2004
20102420331206145219911 ~2005
2010343259402068651910 ~2004
2010418919402083783910 ~2004
2010577091402115418310 ~2004
20106416211608513296911 ~2005
2010678203402135640710 ~2004
2010835763402167152710 ~2004
2010953159402190631910 ~2004
20109790371608783229711 ~2005
2011079711402215942310 ~2004
20110830771206649846311 ~2005
2011125971402225194310 ~2004
2011253999402250799910 ~2004
2011314719402262943910 ~2004
2011328183402265636710 ~2004
2011339019402267803910 ~2004
2011353791402270758310 ~2004
2011364123402272824710 ~2004
20114779011206886740711 ~2005
2011485779402297155910 ~2004
20114917011206895020711 ~2005
2011500899402300179910 ~2004
20115751731206945103911 ~2005
20116568771206994126311 ~2005
Exponent Prime Factor Digits Year
2011756391402351278310 ~2004
2011784363402356872710 ~2004
2011795091402359018310 ~2004
2011801163402360232710 ~2004
2011887131402377426310 ~2004
2011905911402381182310 ~2004
2011908023402381604710 ~2004
20119321512011932151111 ~2005
201204239317303564579912 ~2008
2012081243402416248710 ~2004
20121000611207260036711 ~2005
20122105331207326319911 ~2005
2012219039402443807910 ~2004
20122793171207367590311 ~2005
2012351843402470368710 ~2004
20123874373219819899311 ~2006
2012392451402478490310 ~2004
2012621651402524330310 ~2004
2012623859402524771910 ~2004
2012650511402530102310 ~2004
2012672771402534554310 ~2004
201267582717711547277712 ~2008
20127352971207641178311 ~2005
2012750699402550139910 ~2004
2012792543402558508710 ~2004
Home
4.724.182 digits
e-mail
25-04-13