Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1853835083370767016710 ~2003
18538379391483070351311 ~2005
18538454532966152724911 ~2006
18538701771483096141711 ~2005
1853929163370785832710 ~2003
1853987711370797542310 ~2003
1853994731370798946310 ~2003
1854040091370808018310 ~2003
1854247091370849418310 ~2003
18542546832966807492911 ~2006
18543667331112620039911 ~2005
1854369131370873826310 ~2003
18543740993337873378311 ~2006
18543915771112634946311 ~2005
1854404243370880848710 ~2003
1854418019370883603910 ~2003
1854422159370884431910 ~2003
1854597791370919558310 ~2003
1854657251370931450310 ~2003
1854680963370936192710 ~2003
18546864731112811883911 ~2005
1854690611370938122310 ~2003
185471147310015441954312 ~2007
1854761159370952231910 ~2003
1854792311370958462310 ~2003
Exponent Prime Factor Digits Year
1854979943370995988710 ~2003
1855000463371000092710 ~2003
18550429331113025759911 ~2005
18550903731113054223911 ~2005
1855105391371021078310 ~2003
18551307011113078420711 ~2005
18551943892597272144711 ~2005
1855421699371084339910 ~2003
1855523591371104718310 ~2003
1855527983371105596710 ~2003
1855553891371110778310 ~2003
18557225531113433531911 ~2005
18557838734453881295311 ~2006
1855803179371160635910 ~2003
1855830659371166131910 ~2003
1855858619371171723910 ~2003
1855897919371179583910 ~2003
1855923851371184770310 ~2003
1855955243371191048710 ~2003
1855978703371195740710 ~2003
1855985399371197079910 ~2003
18560082371113604942311 ~2005
1856027279371205455910 ~2003
1856066951371213390310 ~2003
1856082191371216438310 ~2003
Exponent Prime Factor Digits Year
18561417672969826827311 ~2006
1856159003371231800710 ~2003
1856171519371234303910 ~2003
18562238411113734304711 ~2005
1856244251371248850310 ~2003
18562746892598784564711 ~2005
1856334719371266943910 ~2003
1856348951371269790310 ~2003
1856389763371277952710 ~2003
1856524331371304866310 ~2003
1856651711371330342310 ~2003
1856658299371331659910 ~2003
1856788691371357738310 ~2003
18568182611114090956711 ~2005
1856913251371382650310 ~2003
1856946599371389319910 ~2003
18569854996313750696711 ~2006
1856989811371397962310 ~2003
18570315134085469328711 ~2006
1857037079371407415910 ~2003
1857195971371439194310 ~2003
1857242963371448592710 ~2003
18572521211114351272711 ~2005
1857286331371457266310 ~2003
18573167572600243459911 ~2005
Exponent Prime Factor Digits Year
18573182692600245576711 ~2005
1857326459371465291910 ~2003
1857336251371467250310 ~2003
1857472583371494516710 ~2003
18575732695572719807111 ~2006
1857591383371518276710 ~2003
1857697571371539514310 ~2003
18577122011114627320711 ~2005
18577318571114639114311 ~2005
1857772643371554528710 ~2003
1857776951371555390310 ~2003
1857959651371591930310 ~2003
18579823394459157613711 ~2006
18580074912972811985711 ~2006
18580399611486431968911 ~2005
1858059179371611835910 ~2003
1858101911371620382310 ~2003
18581372211486509776911 ~2005
1858170071371634014310 ~2003
18582656271486612501711 ~2005
1858307063371661412710 ~2003
1858387991371677598310 ~2003
1858415519371683103910 ~2003
1858487843371697568710 ~2003
18585326391486826111311 ~2005
Home
4.768.925 digits
e-mail
25-05-04