Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18637553596336768220711 ~2006
1863768899372753779910 ~2003
1863863951372772790310 ~2003
1863873083372774616710 ~2003
1863886631372777326310 ~2003
18638949793355010962311 ~2006
1863927011372785402310 ~2003
18639889611491191168911 ~2005
18640154294473637029711 ~2006
18640174371118410462311 ~2005
1864138931372827786310 ~2003
18641938011491355040911 ~2005
18642786171491422893711 ~2005
1864286111372857222310 ~2003
1864358579372871715910 ~2003
1864385723372877144710 ~2003
18644116931118647015911 ~2005
1864428911372885782310 ~2003
18644393098949308683311 ~2007
1864465331372893066310 ~2003
1864497671372899534310 ~2003
1864503419372900683910 ~2003
18645191411118711484711 ~2005
1864549091372909818310 ~2003
1864549223372909844710 ~2003
Exponent Prime Factor Digits Year
1864641491372928298310 ~2003
18646806611118808396711 ~2005
18647424311864742431111 ~2005
18648325811118899548711 ~2005
18648658791491892703311 ~2005
1864895243372979048710 ~2003
18649235211118954112711 ~2005
18649790932610970730311 ~2005
18649989311864998931111 ~2005
18650591811119035508711 ~2005
18650720171119043210311 ~2005
1865079731373015946310 ~2003
18650964611119057876711 ~2005
1865142803373028560710 ~2003
18652842771119170566311 ~2005
1865330399373066079910 ~2003
18653632372611508531911 ~2005
18653683911492294712911 ~2005
18653763771119225826311 ~2005
1865378951373075790310 ~2003
1865393063373078612710 ~2003
18653998311492319864911 ~2005
1865428991373085798310 ~2003
18654464471865446447111 ~2005
1865495759373099151910 ~2003
Exponent Prime Factor Digits Year
1865731331373146266310 ~2003
18658178571492654285711 ~2005
1865828579373165715910 ~2003
1865855003373171000710 ~2003
1865901683373180336710 ~2003
18659112771119546766311 ~2005
18659898411119593904711 ~2005
18660450291492836023311 ~2005
18663334331119800059911 ~2005
1866381311373276262310 ~2003
1866388763373277752710 ~2003
18663896211493111696911 ~2005
1866448739373289747910 ~2003
18665784711493262776911 ~2005
1866863039373372607910 ~2003
1866958763373391752710 ~2003
1867019723373403944710 ~2003
18671185211120271112711 ~2005
18671211437468484572111 ~2007
18671219811120273188711 ~2005
1867139591373427918310 ~2003
18671945231867194523111 ~2005
18672668991493813519311 ~2005
18672891131120373467911 ~2005
1867303799373460759910 ~2003
Exponent Prime Factor Digits Year
1867331363373466272710 ~2003
18673657131120419427911 ~2005
1867476119373495223910 ~2003
1867493219373498643910 ~2003
1867591079373518215910 ~2003
18676236971120574218311 ~2005
18676499411120589964711 ~2005
1867745471373549094310 ~2003
1867747103373549420710 ~2003
1867755203373551040710 ~2003
18677616971120657018311 ~2005
1867767311373553462310 ~2003
18677926391867792639111 ~2005
1867794179373558835910 ~2003
18677965371494237229711 ~2005
1867863659373572731910 ~2003
1867912523373582504710 ~2003
18679424991494353999311 ~2005
1867995851373599170310 ~2003
1868010563373602112710 ~2003
1868112611373622522310 ~2003
1868148959373629791910 ~2003
1868153543373630708710 ~2003
18681624111494529928911 ~2005
1868198639373639727910 ~2003
Home
4.768.925 digits
e-mail
25-05-04