Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1086569293651941575910 ~2003
1086591911217318382310 ~2002
1086605771217321154310 ~2002
1086627011217325402310 ~2002
1086693143217338628710 ~2002
1086698219217339643910 ~2002
1086705839217341167910 ~2002
10867390791956130342311 ~2004
1086754199217350839910 ~2002
1086795971217359194310 ~2002
1086801179217360235910 ~2002
1086805679217361135910 ~2002
1086870959217374191910 ~2002
1086878843217375768710 ~2002
1086884501652130700710 ~2003
1086903473652142083910 ~2003
1086909899217381979910 ~2002
1086936023217387204710 ~2002
1086942299869553839310 ~2003
10869653231086965323111 ~2003
1087040413652224247910 ~2003
10870421415000393848711 ~2005
1087069253652241551910 ~2003
1087103603217420720710 ~2002
1087109351217421870310 ~2002
Exponent Prime Factor Digits Year
1087115699217423139910 ~2002
1087129529869703623310 ~2003
1087132103217426420710 ~2002
1087192703217438540710 ~2002
1087207739217441547910 ~2002
1087265951217453190310 ~2002
1087295351217459070310 ~2002
1087315991217463198310 ~2002
1087422179217484435910 ~2002
1087425551217485110310 ~2002
1087438511869950808910 ~2003
1087487057652492234310 ~2003
1087490951217498190310 ~2002
1087526519217505303910 ~2002
1087561571217512314310 ~2002
1087623419217524683910 ~2002
1087623539217524707910 ~2002
1087647181652588308710 ~2003
1087648931217529786310 ~2002
1087678499217535699910 ~2002
1087688603217537720710 ~2002
1087692191217538438310 ~2002
10877216391957898950311 ~2004
1087724471217544894310 ~2002
1087750571217550114310 ~2002
Exponent Prime Factor Digits Year
1087802483217560496710 ~2002
1087805219217561043910 ~2002
1087816871217563374310 ~2002
10878273291522958260711 ~2004
1087835579217567115910 ~2002
1087838831870271064910 ~2003
10878754975874527683911 ~2005
1087884683217576936710 ~2002
108788982710443742339312 ~2006
1087904903217580980710 ~2002
1087938011217587602310 ~2002
1087978739870382991310 ~2003
1087979723217595944710 ~2002
1087980779217596155910 ~2002
1088007419217601483910 ~2002
1088019791217603958310 ~2002
1088051537652830922310 ~2003
1088060243217612048710 ~2002
1088077499870461999310 ~2003
1088150183217630036710 ~2002
10881582431088158243111 ~2003
1088166791217633358310 ~2002
1088205353652923211910 ~2003
1088228783217645756710 ~2002
1088236811217647362310 ~2002
Exponent Prime Factor Digits Year
1088241683217648336710 ~2002
1088259083217651816710 ~2002
1088350943217670188710 ~2002
1088422091217684418310 ~2002
1088427503217685500710 ~2002
1088449451217689890310 ~2002
1088455871217691174310 ~2002
1088468351217693670310 ~2002
1088474171217694834310 ~2002
1088477969870782375310 ~2003
1088482379217696475910 ~2002
1088495279217699055910 ~2002
1088542837653125702310 ~2003
1088553023217710604710 ~2002
1088560079217712015910 ~2002
1088583791217716758310 ~2002
1088646641870917312910 ~2003
1088667803217733560710 ~2002
1088721311217744262310 ~2002
1088734331217746866310 ~2002
1088744159217748831910 ~2002
1088774051217754810310 ~2002
1088786591217757318310 ~2002
1088798339217759667910 ~2002
1088836271217767254310 ~2002
Home
5.187.277 digits
e-mail
25-11-17