Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18486797694436831445711 ~2006
1848714599369742919910 ~2003
1848721379369744275910 ~2003
1848738299369747659910 ~2003
18487689411109261364711 ~2005
1848780803369756160710 ~2003
1848790739369758147910 ~2003
1848852899369770579910 ~2003
1849018043369803608710 ~2003
1849053023369810604710 ~2003
18490714931109442895911 ~2005
18491170913328410763911 ~2006
18491561571109493694311 ~2005
1849158539369831707910 ~2003
1849206731369841346310 ~2003
1849255403369851080710 ~2003
1849405931369881186310 ~2003
18494761031849476103111 ~2005
1849540391369908078310 ~2003
1849617083369923416710 ~2003
184971954153271922780912 ~2009
18497236615919115715311 ~2006
18498908771109934526311 ~2005
18501040211110062412711 ~2005
1850122931370024586310 ~2003
Exponent Prime Factor Digits Year
1850157131370031426310 ~2003
1850233019370046603910 ~2003
18502577771110154666311 ~2005
1850264891370052978310 ~2003
1850266679370053335910 ~2003
18503316111480265288911 ~2005
1850548499370109699910 ~2003
1850606123370121224710 ~2003
1850749223370149844710 ~2003
1850753171370150634310 ~2003
1850758223370151644710 ~2003
1850837711370167542310 ~2003
1850854259370170851910 ~2003
1850913299370182659910 ~2003
1850919443370183888710 ~2003
1851144551370228910310 ~2003
18512234331110734059911 ~2005
1851226703370245340710 ~2003
18512475371110748522311 ~2005
1851329279370265855910 ~2003
18513385577405354228111 ~2007
1851508079370301615910 ~2003
1851604211370320842310 ~2003
1851691403370338280710 ~2003
1851704639370340927910 ~2003
Exponent Prime Factor Digits Year
1851735731370347146310 ~2003
1851764639370352927910 ~2003
1851770603370354120710 ~2003
1851774803370354960710 ~2003
18518123211111087392711 ~2005
18518810211481504816911 ~2005
1851959639370391927910 ~2003
1851993779370398755910 ~2003
1852085351370417070310 ~2003
18520887371111253242311 ~2005
1852114151370422830310 ~2003
18521861694445246805711 ~2006
18521876571111312594311 ~2005
18523071612963691457711 ~2006
1852350911370470182310 ~2003
1852427579370485515910 ~2003
1852461119370492223910 ~2003
18524754471481980357711 ~2005
1852477391370495478310 ~2003
1852495919370499183910 ~2003
18525563931111533835911 ~2005
1852579031370515806310 ~2003
18526167131111570027911 ~2005
1852638323370527664710 ~2003
1852717319370543463910 ~2003
Exponent Prime Factor Digits Year
18527392611111643556711 ~2005
1852762511370552502310 ~2003
185277763910746110306312 ~2007
1852846571370569314310 ~2003
1852896431370579286310 ~2003
1852911191370582238310 ~2003
18529226991482338159311 ~2005
1852945511370589102310 ~2003
1852957019370591403910 ~2003
1853049239370609847910 ~2003
18532187771111931266311 ~2005
1853230199370646039910 ~2003
1853248079370649615910 ~2003
18532617194447828125711 ~2006
1853315111370663022310 ~2003
1853485043370697008710 ~2003
18534969479267484735111 ~2007
18535025271482802021711 ~2005
18535186971482814957711 ~2005
1853556203370711240710 ~2003
1853582231370716446310 ~2003
1853629751370725950310 ~2003
1853708459370741691910 ~2003
1853722943370744588710 ~2003
1853798819370759763910 ~2003
Home
4.768.925 digits
e-mail
25-05-04