Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1843749191368749838310 ~2003
18438016991843801699111 ~2005
1843844963368768992710 ~2003
18438767572581427459911 ~2005
1843952471368790494310 ~2003
1843969619368793923910 ~2003
1843995911368799182310 ~2003
1844008583368801716710 ~2003
18440952234425828535311 ~2006
1844099303368819860710 ~2003
1844111903368822380710 ~2003
18441685271844168527111 ~2005
1844337263368867452710 ~2003
1844367419368873483910 ~2003
1844414639368882927910 ~2003
18445140194426833645711 ~2006
1844616419368923283910 ~2003
1844655551368931110310 ~2003
18447613331106856799911 ~2005
18448098774427543704911 ~2006
1844814203368962840710 ~2003
1844845199368969039910 ~2003
1844857271368971454310 ~2003
1844885699368977139910 ~2003
1844900471368980094310 ~2003
Exponent Prime Factor Digits Year
18449706711475976536911 ~2005
1844994491368998898310 ~2003
1845000203369000040710 ~2003
1845008771369001754310 ~2003
1845072731369014546310 ~2003
1845117119369023423910 ~2003
1845165011369033002310 ~2003
18452830577381132228111 ~2007
1845374159369074831910 ~2003
1845412319369082463910 ~2003
1845448883369089776710 ~2003
1845455831369091166310 ~2003
1845565751369113150310 ~2003
1845571463369114292710 ~2003
18456143211107368592711 ~2005
18456288011107377280711 ~2005
1845771971369154394310 ~2003
1845836879369167375910 ~2003
1845848111369169622310 ~2003
1845874031369174806310 ~2003
1845880703369176140710 ~2003
1846011539369202307910 ~2003
18460236172584433063911 ~2005
1846044443369208888710 ~2003
1846047839369209567910 ~2003
Exponent Prime Factor Digits Year
1846110131369222026310 ~2003
18461590372584622651911 ~2005
1846272839369254567910 ~2003
1846282631369256526310 ~2003
1846313351369262670310 ~2003
18463532775539059831111 ~2006
1846440443369288088710 ~2003
1846533131369306626310 ~2003
1846570763369314152710 ~2003
1846614083369322816710 ~2003
1846661951369332390310 ~2003
1846671419369334283910 ~2003
18466938111477355048911 ~2005
18467169171108030150311 ~2005
18467598011108055880711 ~2005
18470135211477610816911 ~2005
18470838972955334235311 ~2006
1847104739369420947910 ~2003
1847176211369435242310 ~2003
1847283239369456647910 ~2003
18473059311477844744911 ~2005
1847328491369465698310 ~2003
18473476931108408615911 ~2005
18473556411108413384711 ~2005
1847358059369471611910 ~2003
Exponent Prime Factor Digits Year
1847479451369495890310 ~2003
1847512679369502535910 ~2003
18475373811108522428711 ~2005
1847749199369549839910 ~2003
1847749331369549866310 ~2003
18478302411108698144711 ~2005
1847846303369569260710 ~2003
1847852243369570448710 ~2003
18479478171478358253711 ~2005
1847981279369596255910 ~2003
1847995211369599042310 ~2003
1848031331369606266310 ~2003
1848129011369625802310 ~2003
184816876111458646318312 ~2007
1848197699369639539910 ~2003
184820643113307086303312 ~2007
1848220571369644114310 ~2003
1848251063369650212710 ~2003
18482796771108967806311 ~2005
1848321743369664348710 ~2003
18483256212957320993711 ~2006
18484485193327207334311 ~2006
1848476111369695222310 ~2003
1848606251369721250310 ~2003
1848652859369730571910 ~2003
Home
4.768.925 digits
e-mail
25-05-04