Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
940169123188033824710 ~2001
9401716636769235973711 ~2005
940182179188036435910 ~2001
940202831188040566310 ~2001
940231763188046352710 ~2001
940243321564145992710 ~2002
940249619188049923910 ~2001
940269443188053888710 ~2001
940323563188064712710 ~2001
940335937564201562310 ~2002
9403443111692619759911 ~2003
940353991940353991110 ~2003
940354621564212772710 ~2002
940375811188075162310 ~2001
940402163188080432710 ~2001
940413967940413967110 ~2003
9404154711692747847911 ~2003
9404378875266452167311 ~2005
940442039188088407910 ~2001
940444283188088856710 ~2001
940472723188094544710 ~2001
940521839188104367910 ~2001
940533323188106664710 ~2001
940542899188108579910 ~2001
940561679188112335910 ~2001
Exponent Prime Factor Digits Year
940588919188117783910 ~2001
9406289932257509583311 ~2004
940645907752516725710 ~2003
940649243188129848710 ~2001
9406510392257562493711 ~2004
9406561131316918558311 ~2003
9407049972257691992911 ~2004
940728011188145602310 ~2001
940740239188148047910 ~2001
940743491188148698310 ~2001
9407673292257841589711 ~2004
940774319188154863910 ~2001
940781483188156296710 ~2001
9408221111505315377711 ~2003
940825439188165087910 ~2001
9408551635268788912911 ~2005
940857971188171594310 ~2001
940891079188178215910 ~2001
940895099188179019910 ~2001
940916363188183272710 ~2001
940926611188185322310 ~2001
940932539188186507910 ~2001
940934497564560698310 ~2002
940944479188188895910 ~2001
9409631872446504286311 ~2004
Exponent Prime Factor Digits Year
941037683188207536710 ~2001
941041499188208299910 ~2001
941050157564630094310 ~2002
941057531188211506310 ~2001
941076971188215394310 ~2001
941092991188218598310 ~2001
941101319188220263910 ~2001
941120591188224118310 ~2001
941168831188233766310 ~2001
941180531752944424910 ~2003
941190539188238107910 ~2001
9412937515271245005711 ~2005
941349371188269874310 ~2001
941418683188283736710 ~2001
941441771188288354310 ~2001
941453003188290600710 ~2001
941474321564884592710 ~2002
941495123188299024710 ~2001
941507471188301494310 ~2001
941508443188301688710 ~2001
9415406033954470532711 ~2004
941568059188313611910 ~2001
941598719188319743910 ~2001
941636879188327375910 ~2001
941658863188331772710 ~2001
Exponent Prime Factor Digits Year
941674091188334818310 ~2001
9416782613013370435311 ~2004
941684171188336834310 ~2001
941695763188339152710 ~2001
9417023292260085589711 ~2004
941741939188348387910 ~2001
941802143188360428710 ~2001
941830679188366135910 ~2001
941834483188366896710 ~2001
9418566071506970571311 ~2003
941860477565116286310 ~2002
941912879188382575910 ~2001
9419194811507071169711 ~2003
941944259188388851910 ~2001
941953559188390711910 ~2001
941964119188392823910 ~2001
941983571188396714310 ~2001
941987723188397544710 ~2001
941997011188399402310 ~2001
942045557753636445710 ~2003
9420544572826163371111 ~2004
942089651188417930310 ~2001
942137243188427448710 ~2001
942148199188429639910 ~2001
942176951188435390310 ~2001
Home
5.307.017 digits
e-mail
26-01-11