Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1126780793676068475910 ~2003
11267900591126790059111 ~2003
1126814471225362894310 ~2002
1126820543225364108710 ~2002
1126848071225369614310 ~2002
1126854959225370991910 ~2002
11269162694507665076111 ~2005
1126928039225385607910 ~2002
1126932659225386531910 ~2002
11269448394733168323911 ~2005
1127026931225405386310 ~2002
1127040437901632349710 ~2003
1127086139225417227910 ~2002
1127088659225417731910 ~2002
1127134979225426995910 ~2002
1127157599225431519910 ~2002
1127181299225436259910 ~2002
1127215031225443006310 ~2002
1127225243225445048710 ~2002
1127281283225456256710 ~2002
11273063771803690203311 ~2004
1127317643225463528710 ~2002
1127348969901879175310 ~2003
1127354051225470810310 ~2002
1127370143225474028710 ~2002
Exponent Prime Factor Digits Year
1127378831225475766310 ~2002
1127389583225477916710 ~2002
1127400517676440310310 ~2003
1127461571901969256910 ~2003
1127466491225493298310 ~2002
1127487743225497548710 ~2002
1127502263225500452710 ~2002
11275739177216473068911 ~2005
1127613059225522611910 ~2002
1127628563225525712710 ~2002
1127663891225532778310 ~2002
1127727899225545579910 ~2002
1127731799225546359910 ~2002
1127753183225550636710 ~2002
1127754311225550862310 ~2002
11277694511804431121711 ~2004
1127775023225555004710 ~2002
11278380594736919847911 ~2005
1127840699225568139910 ~2002
1127879939225575987910 ~2002
1127937059225587411910 ~2002
1127940371225588074310 ~2002
1127973191225594638310 ~2002
1127987831225597566310 ~2002
1128001643225600328710 ~2002
Exponent Prime Factor Digits Year
1128026303225605260710 ~2002
1128036779225607355910 ~2002
1128063983225612796710 ~2002
1128065363225613072710 ~2002
1128081557902465245710 ~2003
1128118451225623690310 ~2002
1128138659225627731910 ~2002
1128157259225631451910 ~2002
1128232709902586167310 ~2003
11282367713610357667311 ~2005
1128311999902649599310 ~2003
1128357803225671560710 ~2002
11283734471128373447111 ~2003
1128401171902720936910 ~2003
1128441959225688391910 ~2002
1128445301677067180710 ~2003
1128452879225690575910 ~2002
1128477131225695426310 ~2002
1128492719225698543910 ~2002
1128505571225701114310 ~2002
1128539939225707987910 ~2002
1128641159225728231910 ~2002
1128649391225729878310 ~2002
1128737399225747479910 ~2002
11287838831128783883111 ~2003
Exponent Prime Factor Digits Year
1128802523225760504710 ~2002
11288232592709175821711 ~2004
11288406371806145019311 ~2004
1128841933677305159910 ~2003
1128848999225769799910 ~2002
1128910121903128096910 ~2003
1128999983225799996710 ~2002
11290857311806537169711 ~2004
11291583071129158307111 ~2003
1129190423225838084710 ~2002
1129225417677535250310 ~2003
1129272899225854579910 ~2002
1129275299903420239310 ~2003
1129279913677567947910 ~2003
1129288679225857735910 ~2002
1129336751225867350310 ~2002
1129346903225869380710 ~2002
1129360811225872162310 ~2002
1129446037677667622310 ~2003
1129492139225898427910 ~2002
1129495331225899066310 ~2002
1129620923225924184710 ~2002
11296528992711166957711 ~2004
1129781519225956303910 ~2002
1129785851225957170310 ~2002
Home
4.724.182 digits
e-mail
25-04-13