Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1055442743211088548710 ~2001
1055478863211095772710 ~2001
1055481671211096334310 ~2001
1055521583211104316710 ~2001
1055523323211104664710 ~2001
10555564871900001676711 ~2004
1055583719211116743910 ~2001
1055636363211127272710 ~2001
1055668093633400855910 ~2003
1055681303211136260710 ~2001
1055696123211139224710 ~2001
1055733083211146616710 ~2001
1055811719211162343910 ~2001
1055830439211166087910 ~2001
1055859601633515760710 ~2003
1055881643211176328710 ~2001
1055893717633536230310 ~2003
1055894639211178927910 ~2001
1055900159211180031910 ~2001
1055922239211184447910 ~2001
1055931011211186202310 ~2001
1055957999211191599910 ~2001
1055970911211194182310 ~2001
1055984339211196867910 ~2001
1056077257633646354310 ~2003
Exponent Prime Factor Digits Year
1056116101633669660710 ~2003
10561400871901052156711 ~2004
1056202597633721558310 ~2003
10562491495069995915311 ~2005
10562865191901315734311 ~2004
1056351311211270262310 ~2001
1056421139211284227910 ~2001
1056427199211285439910 ~2001
1056432659211286531910 ~2001
1056459029845167223310 ~2003
1056491077633894646310 ~2003
1056527051211305410310 ~2001
1056536317633921790310 ~2003
1056541679211308335910 ~2001
1056551423211310284710 ~2001
1056589537633953722310 ~2003
1056636689845309351310 ~2003
1056656897845325517710 ~2003
1056714479211342895910 ~2001
1056717719211343543910 ~2001
1056738359211347671910 ~2001
1056860713634116427910 ~2003
1056874271845499416910 ~2003
1056882719211376543910 ~2001
1056904319211380863910 ~2001
Exponent Prime Factor Digits Year
1056956951211391390310 ~2001
1056957131211391426310 ~2001
1056962591211392518310 ~2001
1057099259211419851910 ~2001
1057135979211427195910 ~2001
1057137997634282798310 ~2003
1057151099211430219910 ~2001
1057176563211435312710 ~2001
1057204991845763992910 ~2003
1057213343211442668710 ~2001
10572232631057223263111 ~2003
1057257083211451416710 ~2001
1057291751211458350310 ~2001
10573468973172040691111 ~2004
1057372499211474499910 ~2001
1057375043211475008710 ~2001
1057412963211482592710 ~2001
1057453751211490750310 ~2001
1057455863211491172710 ~2001
10574572435287286215111 ~2005
1057582271211516454310 ~2001
1057588043211517608710 ~2001
1057616159211523231910 ~2001
1057631657846105325710 ~2003
1057632743211526548710 ~2001
Exponent Prime Factor Digits Year
1057648283211529656710 ~2001
1057702031211540406310 ~2001
10578451271057845127111 ~2003
1057862681846290144910 ~2003
1057862999211572599910 ~2001
1057869563211573912710 ~2001
1057905119211581023910 ~2001
1057927319211585463910 ~2001
1057985723211597144710 ~2001
1057990751211598150310 ~2001
1058011763211602352710 ~2001
1058031479211606295910 ~2001
1058046971211609394310 ~2001
1058052659211610531910 ~2001
10580554212327721926311 ~2004
1058082299211616459910 ~2001
1058109553634865731910 ~2003
1058152619211630523910 ~2001
1058157491211631498310 ~2001
1058175641634905384710 ~2003
1058190071211638014310 ~2001
1058251703211650340710 ~2001
1058293199211658639910 ~2001
1058307359211661471910 ~2001
1058308739211661747910 ~2001
Home
4.768.925 digits
e-mail
25-05-04