Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1058347079211669415910 ~2001
1058357939211671587910 ~2001
1058370431211674086310 ~2001
10583756231058375623111 ~2003
1058400851211680170310 ~2001
1058443703211688740710 ~2001
1058446583211689316710 ~2001
1058448263211689652710 ~2001
1058488751211697750310 ~2001
1058515571211703114310 ~2001
1058535743211707148710 ~2001
1058542931211708586310 ~2001
1058555833635133499910 ~2003
1058556743211711348710 ~2001
1058576819211715363910 ~2001
1058595623211719124710 ~2001
1058622457635173474310 ~2003
1058662037635197222310 ~2003
1058671093635202655910 ~2003
1058673743211734748710 ~2001
10586860092540846421711 ~2004
1058702951211740590310 ~2001
10587053392540892813711 ~2004
1058708773635225263910 ~2003
1058739179211747835910 ~2001
Exponent Prime Factor Digits Year
1058747939211749587910 ~2001
1058838359211767671910 ~2001
1058839643211767928710 ~2001
1058871791211774358310 ~2001
1058877299211775459910 ~2001
1058899223211779844710 ~2001
1058935583211787116710 ~2001
1059053351211810670310 ~2001
1059053531211810706310 ~2001
1059058811211811762310 ~2001
1059062153635437291910 ~2003
1059097079211819415910 ~2001
1059115919211823183910 ~2001
1059153443211830688710 ~2001
1059228011211845602310 ~2001
1059251189847400951310 ~2003
1059277343211855468710 ~2001
1059301913635581147910 ~2003
1059356159211871231910 ~2001
1059365771211873154310 ~2001
1059366263211873252710 ~2001
1059389843211877968710 ~2001
1059405673635643403910 ~2003
1059455879211891175910 ~2001
10594738092330842379911 ~2004
Exponent Prime Factor Digits Year
1059504077635702446310 ~2003
1059518543211903708710 ~2001
1059531217635718730310 ~2003
10595646297628865328911 ~2005
1059585599211917119910 ~2001
1059599399847679519310 ~2003
1059612647847690117710 ~2003
1059617759211923551910 ~2001
1059618071211923614310 ~2001
1059663119211932623910 ~2001
10596718433390949897711 ~2004
1059695941635817564710 ~2003
1059799943211959988710 ~2001
1059805451211961090310 ~2001
1059815333635889199910 ~2003
1059853859211970771910 ~2001
1059888743211977748710 ~2001
10598921995299460995111 ~2005
1059904619211980923910 ~2001
1059911603211982320710 ~2001
1059914701635948820710 ~2003
1059920531211984106310 ~2001
1059938773635963263910 ~2003
1059965303211993060710 ~2001
1060025171848020136910 ~2003
Exponent Prime Factor Digits Year
1060036823212007364710 ~2001
1060057871212011574310 ~2001
1060071707848057365710 ~2003
1060078451212015690310 ~2001
1060141919212028383910 ~2001
1060197161848157728910 ~2003
1060234583212046916710 ~2001
1060257563212051512710 ~2001
1060287911212057582310 ~2001
10603175292544762069711 ~2004
10603827071908688872711 ~2004
1060395659212079131910 ~2001
1060413899212082779910 ~2001
1060455983212091196710 ~2001
1060465633636279379910 ~2003
1060500071212100014310 ~2001
1060547591212109518310 ~2001
1060573463212114692710 ~2001
1060575731212115146310 ~2001
1060622819212124563910 ~2001
10606426193394056380911 ~2004
1060671113636402667910 ~2003
1060731671212146334310 ~2001
1060801499212160299910 ~2001
1060824431212164886310 ~2001
Home
4.768.925 digits
e-mail
25-05-04