Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1053015059210603011910 ~2001
1053018977631811386310 ~2003
1053035339210607067910 ~2001
1053035939210607187910 ~2001
1053050279210610055910 ~2001
1053133397842506717710 ~2003
1053135311210627062310 ~2001
105314299977721953326312 ~2008
1053161579210632315910 ~2001
1053172229842537783310 ~2003
1053172979210634595910 ~2001
1053183671210636734310 ~2001
10531923171474469243911 ~2004
1053196031210639206310 ~2001
1053206411210641282310 ~2001
10532064891474489084711 ~2004
1053217547842574037710 ~2003
1053253979210650795910 ~2001
1053256931210651386310 ~2001
1053310031210662006310 ~2001
1053357479210671495910 ~2001
1053357659210671531910 ~2001
1053361943210672388710 ~2001
1053373571210674714310 ~2001
1053396731210679346310 ~2001
Exponent Prime Factor Digits Year
1053409631210681926310 ~2001
1053424139210684827910 ~2001
1053428777632057266310 ~2003
1053433943210686788710 ~2001
1053440711210688142310 ~2001
1053469199210693839910 ~2001
1053525719210705143910 ~2001
10535536031685685764911 ~2004
10535731793371434172911 ~2004
1053633241632179944710 ~2003
10536692711053669271111 ~2003
1053676979210735395910 ~2001
1053682523210736504710 ~2001
1053740819210748163910 ~2001
1053759431210751886310 ~2001
1053780323210756064710 ~2001
1053860579210772115910 ~2001
1053886523210777304710 ~2001
1053905603210781120710 ~2001
1053969599210793919910 ~2001
1053971459210794291910 ~2001
1053996563210799312710 ~2001
1054028351210805670310 ~2001
1054034843210806968710 ~2001
1054036271210807254310 ~2001
Exponent Prime Factor Digits Year
1054058891210811778310 ~2001
1054077317632446390310 ~2003
1054116179210823235910 ~2001
1054121819210824363910 ~2001
1054162463210832492710 ~2001
10542512292319352703911 ~2004
1054277663210855532710 ~2001
10543080671686892907311 ~2004
1054384321632630592710 ~2003
1054395011843516008910 ~2003
1054442423210888484710 ~2001
10544992331687198772911 ~2004
10545050591054505059111 ~2003
1054515659210903131910 ~2001
10545311292319968483911 ~2004
1054616039210923207910 ~2001
1054619543210923908710 ~2001
1054623539210924707910 ~2001
1054679819210935963910 ~2001
1054680197632808118310 ~2003
10546984391054698439111 ~2003
1054705601632823360710 ~2003
10547173991054717399111 ~2003
1054719131210943826310 ~2001
1054774991210954998310 ~2001
Exponent Prime Factor Digits Year
1054788419210957683910 ~2001
1054829063210965812710 ~2001
1054839839210967967910 ~2001
1054847099210969419910 ~2001
1054884563210976912710 ~2001
1054898699210979739910 ~2001
1054901591210980318310 ~2001
1054953143210990628710 ~2001
1055069231211013846310 ~2001
1055088851211017770310 ~2001
1055103551211020710310 ~2001
1055111279211022255910 ~2001
10551473514431618874311 ~2005
1055186941633112164710 ~2003
1055200571211040114310 ~2001
1055212643211042528710 ~2001
1055227931844182344910 ~2003
1055240003211048000710 ~2001
1055294651211058930310 ~2001
1055327723211065544710 ~2001
1055345591211069118310 ~2001
1055352209844281767310 ~2003
1055394503211078900710 ~2001
1055424143211084828710 ~2001
10554255135699297770311 ~2005
Home
4.768.925 digits
e-mail
25-05-04