Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1163106601697863960710 ~2003
1163236163232647232710 ~2002
1163250743232650148710 ~2002
1163269703232653940710 ~2002
1163274083232654816710 ~2002
116330116932572432732112 ~2007
1163329081697997448710 ~2003
1163349359232669871910 ~2002
1163359979232671995910 ~2002
1163402963232680592710 ~2002
1163530871232706174310 ~2002
1163548871232709774310 ~2002
1163588819232717763910 ~2002
1163589913698153947910 ~2003
1163614337930891469710 ~2003
1163635283232727056710 ~2002
1163649671232729934310 ~2002
1163668199232733639910 ~2002
1163681137698208682310 ~2003
1163692979232738595910 ~2002
1163724899232744979910 ~2002
11637709811862033569711 ~2004
1163773223232754644710 ~2002
1163804039232760807910 ~2002
1163890633698334379910 ~2003
Exponent Prime Factor Digits Year
1163939891232787978310 ~2002
1163979611232795922310 ~2002
1164106439232821287910 ~2002
1164133739232826747910 ~2002
116413768318859030464712 ~2006
1164180497931344397710 ~2003
1164232271232846454310 ~2002
1164241079232848215910 ~2002
1164250799232850159910 ~2002
1164300911232860182310 ~2002
1164311873698587123910 ~2003
1164328811232865762310 ~2002
1164375587931500469710 ~2003
1164375743232875148710 ~2002
11644187472095953744711 ~2004
1164423779232884755910 ~2002
1164430097698658058310 ~2003
1164444557698666734310 ~2003
1164504563232900912710 ~2002
11645225992096140678311 ~2004
1164539141698723484710 ~2003
11645425433027810611911 ~2005
1164566339232913267910 ~2002
1164587579232917515910 ~2002
1164591563232918312710 ~2002
Exponent Prime Factor Digits Year
1164625271232925054310 ~2002
11646832497221036143911 ~2005
1164728483232945696710 ~2002
1164788543232957708710 ~2002
1164800099232960019910 ~2002
1164833233698899939910 ~2003
1164892537698935522310 ~2003
1164940943232988188710 ~2002
1164974879232994975910 ~2002
1164980171232996034310 ~2002
11649829391164982939111 ~2004
1165009523233001904710 ~2002
1165041323233008264710 ~2002
1165041457699024874310 ~2003
11650531815592255268911 ~2005
11650738272097132888711 ~2004
1165108271233021654310 ~2002
1165143851233028770310 ~2002
11652110633728675401711 ~2005
1165221251233044250310 ~2002
1165230491233046098310 ~2002
1165319891233063978310 ~2002
1165323457699194074310 ~2003
1165334363233066872710 ~2002
1165411361699246816710 ~2003
Exponent Prime Factor Digits Year
1165420559233084111910 ~2002
1165434563233086912710 ~2002
1165478519233095703910 ~2002
1165560659233112131910 ~2002
1165590143233118028710 ~2002
1165598303233119660710 ~2002
1165619291233123858310 ~2002
1165680311233136062310 ~2002
11657255412564596190311 ~2004
1165733531233146706310 ~2002
1165804043233160808710 ~2002
1165824397699494638310 ~2003
1165897871233179574310 ~2002
1165932503233186500710 ~2002
1165932959233186591910 ~2002
1165936283233187256710 ~2002
1165991159233198231910 ~2002
1166007971233201594310 ~2002
1166035631233207126310 ~2002
11660456773498137031111 ~2005
1166052731233210546310 ~2002
1166086643233217328710 ~2002
1166088023233217604710 ~2002
1166095979233219195910 ~2002
1166122703233224540710 ~2002
Home
4.768.925 digits
e-mail
25-05-04