Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1028745143205749028710 ~2001
1028778659205755731910 ~2001
1028805539205761107910 ~2001
1028837423205767484710 ~2001
1028895299205779059910 ~2001
1028913923205782784710 ~2001
10289353072675231798311 ~2004
1028952779205790555910 ~2001
1028971451205794290310 ~2001
1028978651205795730310 ~2001
1029057611205811522310 ~2001
1029064199205812839910 ~2001
1029103841617462304710 ~2003
1029126551205825310310 ~2001
10291293711852432867911 ~2004
1029133837617480302310 ~2003
1029181463205836292710 ~2001
1029373421617624052710 ~2003
1029398597823518877710 ~2003
1029447059823557647310 ~2003
1029455243205891048710 ~2001
10294764071029476407111 ~2003
10295325494118130196111 ~2005
1029535739205907147910 ~2001
10295565131647290420911 ~2004
Exponent Prime Factor Digits Year
1029564383205912876710 ~2001
1029603301617761980710 ~2003
1029710677617826406310 ~2003
1029783563205956712710 ~2001
1029804983205960996710 ~2001
1029816923205963384710 ~2001
1029856781823885424910 ~2003
1029868093617920855910 ~2003
1029907751205981550310 ~2001
1029919931205983986310 ~2001
10299315797415507368911 ~2005
1029941579205988315910 ~2001
1029988343205997668710 ~2001
1029993037617995822310 ~2003
1030008131206001626310 ~2001
1030099391206019878310 ~2001
1030100843206020168710 ~2001
1030128629824102903310 ~2003
1030147883206029576710 ~2001
1030168211206033642310 ~2001
1030184471206036894310 ~2001
1030219511206043902310 ~2001
1030307963206061592710 ~2001
1030348799206069759910 ~2001
1030367291206073458310 ~2001
Exponent Prime Factor Digits Year
103038661319577345647112 ~2006
1030438631206087726310 ~2001
1030441931206088386310 ~2001
1030458059206091611910 ~2001
1030478831206095766310 ~2001
1030567511206113502310 ~2001
1030575443206115088710 ~2001
1030575641618345384710 ~2003
1030584601618350760710 ~2003
1030589783206117956710 ~2001
1030674839206134967910 ~2001
1030712233618427339910 ~2003
1030739537824591629710 ~2003
1030767131206153426310 ~2001
1030768559206153711910 ~2001
1030817591206163518310 ~2001
1030843871206168774310 ~2001
1030845661618507396710 ~2003
1030853581618512148710 ~2003
1030855499206171099910 ~2001
1030864981618518988710 ~2003
10308794711030879471111 ~2003
1030911097618546658310 ~2003
1030926551206185310310 ~2001
1030926983206185396710 ~2001
Exponent Prime Factor Digits Year
1030930739206186147910 ~2001
1030975763206195152710 ~2001
1030983251206196650310 ~2001
10309968593299189948911 ~2004
1031027819824822255310 ~2003
1031028899206205779910 ~2001
1031046713618628027910 ~2003
1031082673618649603910 ~2003
10310977631031097763111 ~2003
1031169371206233874310 ~2001
1031176061618705636710 ~2003
1031177137618706282310 ~2003
1031186111206237222310 ~2001
1031191919206238383910 ~2001
1031200403206240080710 ~2001
1031211059206242211910 ~2001
1031253803206250760710 ~2001
1031262781618757668710 ~2003
1031323043206264608710 ~2001
1031328359206265671910 ~2001
1031344297618806578310 ~2003
1031390627825112501710 ~2003
1031425793618855475910 ~2003
1031426183206285236710 ~2001
10314279971650284795311 ~2004
Home
4.768.925 digits
e-mail
25-05-04