Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1026419363205283872710 ~2001
1026446339205289267910 ~2001
1026539411205307882310 ~2001
1026544919205308983910 ~2001
1026563159205312631910 ~2001
1026565103205313020710 ~2001
1026588011205317602310 ~2001
1026610301821288240910 ~2003
1026639479205327895910 ~2001
10266447838213158264111 ~2005
1026669851205333970310 ~2001
1026716231205343246310 ~2001
1026719051205343810310 ~2001
1026729971205345994310 ~2001
1026731171205346234310 ~2001
1026748357616049014310 ~2003
1026751421616050852710 ~2003
10267715632464251751311 ~2004
1026784571205356914310 ~2001
1026791819205358363910 ~2001
1026794123205358824710 ~2001
10268026492464326357711 ~2004
1026812201821449760910 ~2003
1026906911205381382310 ~2001
1026921191205384238310 ~2001
Exponent Prime Factor Digits Year
1026949139205389827910 ~2001
1027036163205407232710 ~2001
10270458791027045879111 ~2003
1027081241616248744710 ~2003
1027098119205419623910 ~2001
1027126151205425230310 ~2001
1027133039205426607910 ~2001
1027156199205431239910 ~2001
1027167923205433584710 ~2001
1027183273616309963910 ~2003
1027198619205439723910 ~2001
1027308479205461695910 ~2001
10273291031027329103111 ~2003
1027342031205468406310 ~2001
1027360283205472056710 ~2001
10273640471027364047111 ~2003
1027409639205481927910 ~2001
1027411717616447030310 ~2003
1027426313616455787910 ~2003
1027426357616455814310 ~2003
1027479503205495900710 ~2001
1027502303205500460710 ~2001
1027508231205501646310 ~2001
1027511711205502342310 ~2001
1027516859205503371910 ~2001
Exponent Prime Factor Digits Year
10275501319042441152911 ~2005
1027568819205513763910 ~2001
1027603919205520783910 ~2001
1027616591205523318310 ~2001
1027636079205527215910 ~2001
1027636523205527304710 ~2001
1027697501822158000910 ~2003
1027713983205542796710 ~2001
1027715237616629142310 ~2003
1027743131205548626310 ~2001
1027752419205550483910 ~2001
1027804559205560911910 ~2001
1027808711205561742310 ~2001
1027830071205566014310 ~2001
1027846817822277453710 ~2003
1027863779205572755910 ~2001
1027880663205576132710 ~2001
1027888259205577651910 ~2001
1027892363205578472710 ~2001
1027900799205580159910 ~2001
1027913339205582667910 ~2001
1027949933616769959910 ~2003
1027953851205590770310 ~2001
1027969763205593952710 ~2001
10279730992467135437711 ~2004
Exponent Prime Factor Digits Year
1027976039205595207910 ~2001
1027988639205597727910 ~2001
1027995359205599071910 ~2001
1027995443205599088710 ~2001
1028108041616864824710 ~2003
1028109431205621886310 ~2001
1028135819205627163910 ~2001
1028137793616882675910 ~2003
1028141531205628306310 ~2001
1028142911205628582310 ~2001
1028254349822603479310 ~2003
1028295179205659035910 ~2001
1028375773617025463910 ~2003
102840053913163526899312 ~2006
1028435113617061067910 ~2003
1028494501617096700710 ~2003
1028531183205706236710 ~2001
1028540963205708192710 ~2001
1028548991205709798310 ~2001
1028621003205724200710 ~2001
1028643359205728671910 ~2001
10286739771440143567911 ~2003
1028723603205744720710 ~2001
10287260037612572422311 ~2005
1028730161822984128910 ~2003
Home
4.768.925 digits
e-mail
25-05-04