Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1031444423206288884710 ~2001
10314484131444027778311 ~2003
1031451851825161480910 ~2003
1031453711206290742310 ~2001
1031464403206292880710 ~2001
1031475143206295028710 ~2001
1031490899206298179910 ~2001
1031492963206298592710 ~2001
1031506709825205367310 ~2003
1031508011206301602310 ~2001
1031544881618926928710 ~2003
1031549669825239735310 ~2003
1031554379206310875910 ~2001
10315888672682131054311 ~2004
1031610059206322011910 ~2001
1031650091825320072910 ~2003
1031668223206333644710 ~2001
1031676491206335298310 ~2001
1031682563206336512710 ~2001
1031686693619012015910 ~2003
10316999591031699959111 ~2003
103178339313825897466312 ~2006
10318230311031823031111 ~2003
1031827031206365406310 ~2001
1031852543206370508710 ~2001
Exponent Prime Factor Digits Year
1031864423206372884710 ~2001
10318814476604041260911 ~2005
1031905157619143094310 ~2003
1031916617619149970310 ~2003
1031922263206384452710 ~2001
1031926739206385347910 ~2001
1031949911206389982310 ~2001
10319526671031952667111 ~2003
1032062963206412592710 ~2001
1032081383206416276710 ~2001
1032108461619265076710 ~2003
10321713791032171379111 ~2003
1032193691206438738310 ~2001
1032258673619355203910 ~2003
1032280631206456126310 ~2001
1032286823206457364710 ~2001
1032338123206467624710 ~2001
1032386279206477255910 ~2001
1032409271206481854310 ~2001
1032431111206486222310 ~2001
1032453659206490731910 ~2001
1032472319206494463910 ~2001
1032485183206497036710 ~2001
1032507683206501536710 ~2001
1032545603206509120710 ~2001
Exponent Prime Factor Digits Year
1032552089826041671310 ~2003
1032555899206511179910 ~2001
1032559127826047301710 ~2003
1032573011206514602310 ~2001
10325730671858631520711 ~2004
1032581783206516356710 ~2001
1032624419206524883910 ~2001
1032635843206527168710 ~2001
1032720239206544047910 ~2001
1032794377619676626310 ~2003
1032883081619729848710 ~2003
1032905903206581180710 ~2001
10329095471652655275311 ~2004
1032919463206583892710 ~2001
1032951659206590331910 ~2001
1032994463206598892710 ~2001
1032995101619797060710 ~2003
1032999137619799482310 ~2003
1033030571206606114310 ~2001
1033035299826428239310 ~2003
103306216935330726179912 ~2007
1033083839206616767910 ~2001
1033111829826489463310 ~2003
1033125413619875247910 ~2003
10331491272479557904911 ~2004
Exponent Prime Factor Digits Year
1033170899206634179910 ~2001
10332122391859782030311 ~2004
1033241171206648234310 ~2001
1033315091206663018310 ~2001
1033336883206667376710 ~2001
1033338671206667734310 ~2001
1033390153620034091910 ~2003
1033397399206679479910 ~2001
10334432411653509185711 ~2004
1033479959206695991910 ~2001
1033502333620101399910 ~2003
1033519259826815407310 ~2003
1033538777620123266310 ~2003
1033548179206709635910 ~2001
1033612523206722504710 ~2001
1033624043206724808710 ~2001
1033641023206728204710 ~2001
10337755511033775551111 ~2003
1033812359206762471910 ~2001
1033866397620319838310 ~2003
1033867811206773562310 ~2001
1033869983206773996710 ~2001
1033879751206775950310 ~2001
1033902143206780428710 ~2001
10339085831033908583111 ~2003
Home
4.768.925 digits
e-mail
25-05-04