Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
948928433569357059910 ~2002
948945071189789014310 ~2001
948948019948948019110 ~2003
9489589872277501568911 ~2004
9489600791708128142311 ~2003
948977651189795530310 ~2001
948997739189799547910 ~2001
949008299189801659910 ~2001
949031159189806231910 ~2001
949047959189809591910 ~2001
9491002791708380502311 ~2003
949104839189820967910 ~2001
949128779759303023310 ~2003
949143491189828698310 ~2001
949179383189835876710 ~2001
949225619189845123910 ~2001
949230599189846119910 ~2001
949253843189850768710 ~2001
949270691189854138310 ~2001
949343819189868763910 ~2001
949369871189873974310 ~2001
949382111189876422310 ~2001
949391543189878308710 ~2001
949422203189884440710 ~2001
949425353569655211910 ~2002
Exponent Prime Factor Digits Year
949436123189887224710 ~2001
949444319189888863910 ~2001
9494684831519149572911 ~2003
949472519189894503910 ~2001
949502243189900448710 ~2001
949585801569751480710 ~2002
949597973569758783910 ~2002
949613317569767990310 ~2002
949631783189926356710 ~2001
949646363189929272710 ~2001
949660559189932111910 ~2001
949663499189932699910 ~2001
949689121569813472710 ~2002
949690843949690843110 ~2003
949723763189944752710 ~2001
949761503189952300710 ~2001
949783361759826688910 ~2003
949786499189957299910 ~2001
949844411189968882310 ~2001
949877891189975578310 ~2001
949886419949886419110 ~2003
9498879292279731029711 ~2004
949938293569962975910 ~2002
949946951189989390310 ~2001
949961531189992306310 ~2001
Exponent Prime Factor Digits Year
950044691190008938310 ~2001
950087639190017527910 ~2001
950100731190020146310 ~2001
950102831190020566310 ~2001
950108339190021667910 ~2001
9501171532280281167311 ~2004
950152213570091327910 ~2002
950169959190033991910 ~2001
950187503190037500710 ~2001
950196503190039300710 ~2001
950259671190051934310 ~2001
950284823190056964710 ~2001
950380859190076171910 ~2001
950382971190076594310 ~2001
950420951190084190310 ~2001
950422439190084487910 ~2001
950438759190087751910 ~2001
950475419190095083910 ~2001
950478421570287052710 ~2002
950506451190101290310 ~2001
950512103190102420710 ~2001
950548031190109606310 ~2001
950551919190110383910 ~2001
9505664296844078288911 ~2005
950620259190124051910 ~2001
Exponent Prime Factor Digits Year
950627341570376404710 ~2002
950632961570379776710 ~2002
950660699190132139910 ~2001
950666471190133294310 ~2001
950699753570419851910 ~2002
9507248571331014799911 ~2003
950792861760634288910 ~2003
950801051190160210310 ~2001
950802311190160462310 ~2001
950810123190162024710 ~2001
950814719190162943910 ~2001
950837291190167458310 ~2001
950885893570531535910 ~2002
950891891190178378310 ~2001
950967371190193474310 ~2001
951040019190208003910 ~2001
951052451190210490310 ~2001
951066383190213276710 ~2001
951105251190221050310 ~2001
951120697570672418310 ~2002
951122591190224518310 ~2001
951142271190228454310 ~2001
951198359190239671910 ~2001
951199721760959776910 ~2003
951203413570722047910 ~2002
Home
4.724.182 digits
e-mail
25-04-13