Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1023749819204749963910 ~2001
1023754031204750806310 ~2001
1023760319204752063910 ~2001
1023842243204768448710 ~2001
1023917171204783434310 ~2001
1023995543204799108710 ~2001
1024048979204809795910 ~2001
1024136999204827399910 ~2001
1024143143204828628710 ~2001
1024149551204829910310 ~2001
10242722177989323292711 ~2005
1024286951204857390310 ~2001
1024289543204857908710 ~2001
1024306799204861359910 ~2001
1024409843204881968710 ~2001
1024456613614673967910 ~2003
1024551191204910238310 ~2001
10245763097991695210311 ~2005
10245782231024578223111 ~2003
10245811636557319443311 ~2005
1024585403204917080710 ~2001
1024591091204918218310 ~2001
1024610177614766106310 ~2003
10246266431024626643111 ~2003
1024675979204935195910 ~2001
Exponent Prime Factor Digits Year
1024693253614815951910 ~2003
1024717019204943403910 ~2001
1024722071204944414310 ~2001
1024771019204954203910 ~2001
1024776443204955288710 ~2001
1024795631204959126310 ~2001
1024819379819855503310 ~2003
1024856639204971327910 ~2001
1024860071204972014310 ~2001
1024876417614925850310 ~2003
10248857692459725845711 ~2004
1024902143204980428710 ~2001
10249155431024915543111 ~2003
1024930139204986027910 ~2001
1024945739204989147910 ~2001
1024971061614982636710 ~2003
1024973849819979079310 ~2003
1025012441820009952910 ~2003
1025077979205015595910 ~2001
10250794934715365667911 ~2005
1025086019205017203910 ~2001
1025091191205018238310 ~2001
1025118239205023647910 ~2001
1025119349820095479310 ~2003
1025125511205025102310 ~2001
Exponent Prime Factor Digits Year
10251600911845288163911 ~2004
1025163541615098124710 ~2003
1025164223205032844710 ~2001
10251745931640279348911 ~2004
1025205983205041196710 ~2001
1025211641615126984710 ~2003
1025241521615144912710 ~2003
10252682274921287489711 ~2005
1025304517615182710310 ~2003
1025314211205062842310 ~2001
1025394371205078874310 ~2001
1025448311205089662310 ~2001
10254951533076485459111 ~2004
1025498819205099763910 ~2001
1025507531205101506310 ~2001
1025512991205102598310 ~2001
1025522219205104443910 ~2001
1025601371205120274310 ~2001
1025620679205124135910 ~2001
102565777112513024806312 ~2006
1025680681615408408710 ~2003
1025681513615408907910 ~2003
1025713121615427872710 ~2003
1025715401615429240710 ~2003
10257217037385196261711 ~2005
Exponent Prime Factor Digits Year
1025819759205163951910 ~2001
1025820563205164112710 ~2001
1025854691205170938310 ~2001
10258576912667229996711 ~2004
1025895203205179040710 ~2001
1025947381615568428710 ~2003
1025987603205197520710 ~2001
1025994503205198900710 ~2001
1026011377615606826310 ~2003
1026040391205208078310 ~2001
1026089483205217896710 ~2001
1026106181615663708710 ~2003
1026123803205224760710 ~2001
1026176699205235339910 ~2001
10261973872668113206311 ~2004
1026254617615752770310 ~2003
1026316139205263227910 ~2001
10263173111642107697711 ~2004
1026338813615803287910 ~2003
1026338843205267768710 ~2001
1026348419205269683910 ~2001
1026352091205270418310 ~2001
1026395963205279192710 ~2001
10264031111642244977711 ~2004
1026408479205281695910 ~2001
Home
4.768.925 digits
e-mail
25-05-04