Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1131003661678602196710 ~2003
1131019271226203854310 ~2002
1131028103226205620710 ~2002
11310646872035916436711 ~2004
11310803411809728545711 ~2004
1131142451226228490310 ~2002
1131147299226229459910 ~2002
1131199991226239998310 ~2002
11312211971809953915311 ~2004
1131252491226250498310 ~2002
1131326159226265231910 ~2002
1131434123226286824710 ~2002
1131438719226287743910 ~2002
1131465011226293002310 ~2002
1131477251226295450310 ~2002
1131497897905198317710 ~2003
1131552143226310428710 ~2002
1131567071226313414310 ~2002
1131583199905266559310 ~2003
1131587771226317554310 ~2002
1131592739226318547910 ~2002
1131610163226322032710 ~2002
1131647243226329448710 ~2002
1131651539226330307910 ~2002
1131657911226331582310 ~2002
Exponent Prime Factor Digits Year
1131723083226344616710 ~2002
1131743999226348799910 ~2002
1131757859226351571910 ~2002
1131787859226357571910 ~2002
1131803759226360751910 ~2002
11318179092489999399911 ~2004
1131832993679099795910 ~2003
1131839939226367987910 ~2002
1131868943226373788710 ~2002
1131927239226385447910 ~2002
1131943523226388704710 ~2002
1131985091226397018310 ~2002
1132039211226407842310 ~2002
1132091099226418219910 ~2002
1132091783226418356710 ~2002
1132096139226419227910 ~2002
1132100111226420022310 ~2002
1132106603226421320710 ~2002
1132140133679284079910 ~2003
1132166111226433222310 ~2002
1132198811226439762310 ~2002
1132226363226445272710 ~2002
1132295903226459180710 ~2002
1132313771226462754310 ~2002
1132323779226464755910 ~2002
Exponent Prime Factor Digits Year
11324160291585382440711 ~2004
11324480272038406448711 ~2004
1132465751226493150310 ~2002
1132473299226494659910 ~2002
1132489619226497923910 ~2002
1132531583226506316710 ~2002
1132549331226509866310 ~2002
1132563023226512604710 ~2002
1132577711226515542310 ~2002
1132631303226526260710 ~2002
1132635173679581103910 ~2003
1132671539226534307910 ~2002
1132683821906147056910 ~2003
1132752161679651296710 ~2003
1132756043226551208710 ~2002
1132766333679659799910 ~2003
1132793339226558667910 ~2002
11328840012492344802311 ~2004
11328965531812634484911 ~2004
11329653112039337559911 ~2004
1132993583226598716710 ~2002
1132998203226599640710 ~2002
1133005943226601188710 ~2002
1133066717679840030310 ~2003
1133082893679849735910 ~2003
Exponent Prime Factor Digits Year
1133088611226617722310 ~2002
1133105423226621084710 ~2002
1133112251226622450310 ~2002
1133121911226624382310 ~2002
11331278111133127811111 ~2003
1133135891226627178310 ~2002
1133159171226631834310 ~2002
11331894892719654773711 ~2004
11332224172719733800911 ~2004
1133243711226648742310 ~2002
1133269673679961803910 ~2003
1133285183226657036710 ~2002
1133394491226678898310 ~2002
1133410823226682164710 ~2002
1133444171226688834310 ~2002
1133528471226705694310 ~2002
1133557751226711550310 ~2002
1133597789906878231310 ~2003
1133624699226724939910 ~2002
11336342773400902831111 ~2005
1133639999226727999910 ~2002
1133691673680215003910 ~2003
11337361932494219624711 ~2004
1133738783226747756710 ~2002
1133780941680268564710 ~2003
Home
4.768.925 digits
e-mail
25-05-04