Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1204769759240953951910 ~2002
12047928113132461308711 ~2005
1204805363240961072710 ~2002
1204807139240961427910 ~2002
1204939871240987974310 ~2002
1204963139240992627910 ~2002
1204992479240998495910 ~2002
1205032601723019560710 ~2003
1205035823241007164710 ~2002
1205204543241040908710 ~2002
1205215499241043099910 ~2002
12053550712169639127911 ~2004
1205373881723224328710 ~2003
1205385733723231439910 ~2003
12054095771928655323311 ~2004
1205410883241082176710 ~2002
1205413091241082618310 ~2002
1205486783241097356710 ~2002
1205543093723325855910 ~2003
1205569061723341436710 ~2003
1205767991241153598310 ~2002
12058371371929339419311 ~2004
12058869911929419185711 ~2004
1205907803241181560710 ~2002
12059122618682568279311 ~2006
Exponent Prime Factor Digits Year
1205960963241192192710 ~2002
1205965697723579418310 ~2003
1205984519241196903910 ~2002
1205991719241198343910 ~2002
1205992751241198550310 ~2002
1206000203241200040710 ~2002
1206058657723635194310 ~2003
1206065303241213060710 ~2002
1206085871241217174310 ~2002
1206099743241219948710 ~2002
1206116617723669970310 ~2003
1206119699241223939910 ~2002
12061212431206121243111 ~2004
1206169259241233851910 ~2002
1206190031241238006310 ~2002
1206212603241242520710 ~2002
1206235001723741000710 ~2003
1206239159241247831910 ~2002
1206239843241247968710 ~2002
1206280541723768324710 ~2003
1206289013723773407910 ~2003
1206332399241266479910 ~2002
1206371591965097272910 ~2003
1206419723241283944710 ~2002
12064454412654179970311 ~2004
Exponent Prime Factor Digits Year
1206467159241293431910 ~2002
1206498311241299662310 ~2002
1206543743241308748710 ~2002
1206567023241313404710 ~2002
1206606623241321324710 ~2002
1206623233723973939910 ~2003
1206668471241333694310 ~2002
1206691823241338364710 ~2002
1206718031241343606310 ~2002
1206721643241344328710 ~2002
1206794399241358879910 ~2002
1206811883241362376710 ~2002
1206845459241369091910 ~2002
120688141922206618109712 ~2007
12069280972896627432911 ~2005
1206936611241387322310 ~2002
1206943571241388714310 ~2002
1207000139241400027910 ~2002
1207003943241400788710 ~2002
1207008503241401700710 ~2002
1207018451241403690310 ~2002
1207033703241406740710 ~2002
1207054259241410851910 ~2002
12071266037725610259311 ~2006
1207130003241426000710 ~2002
Exponent Prime Factor Digits Year
12071326971689985775911 ~2004
1207142291241428458310 ~2002
1207148303241429660710 ~2002
1207153177724291906310 ~2003
1207207559241441511910 ~2002
1207275197724365118310 ~2003
1207382399241476479910 ~2002
1207383077724429846310 ~2003
1207387019241477403910 ~2002
1207394483241478896710 ~2002
1207422061724453236710 ~2003
1207459637724475782310 ~2003
1207463123241492624710 ~2002
1207470613724482367910 ~2003
1207628819241525763910 ~2002
1207664273724598563910 ~2003
1207697339241539467910 ~2002
1207734299241546859910 ~2002
12078391672174110500711 ~2004
1207839173724703503910 ~2003
12078622511207862251111 ~2004
12078641571691009819911 ~2004
1207875479241575095910 ~2002
1207881071241576214310 ~2002
1207914803241582960710 ~2002
Home
4.724.182 digits
e-mail
25-04-13