Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1013531591202706318310 ~2001
1013567111810853688910 ~2003
1013598161608158896710 ~2002
1013614799810891839310 ~2003
10136198511824515731911 ~2004
1013624669810899735310 ~2003
1013630339202726067910 ~2001
1013635157810908125710 ~2003
1013641019202728203910 ~2001
10136572874054629148111 ~2005
1013699663202739932710 ~2001
1013733839202746767910 ~2001
10137794231622047076911 ~2004
1013861951202772390310 ~2001
1013883733608330239910 ~2002
10138841872433322048911 ~2004
1013941283202788256710 ~2001
1013944181811155344910 ~2003
1014041711202808342310 ~2001
1014152543202830508710 ~2001
1014165143202833028710 ~2001
1014165683202833136710 ~2001
1014213971202842794310 ~2001
1014239459202847891910 ~2001
1014246119202849223910 ~2001
Exponent Prime Factor Digits Year
10142535191014253519111 ~2003
1014313031202862606310 ~2001
1014322031202864406310 ~2001
10143287471014328747111 ~2003
1014344701608606820710 ~2002
10143557471622969195311 ~2004
1014378983202875796710 ~2001
1014448091202889618310 ~2001
1014468131202893626310 ~2001
1014473711202894742310 ~2001
10144846317304289343311 ~2005
1014508763202901752710 ~2001
1014519491202903898310 ~2001
1014531359202906271910 ~2001
10145900091420426012711 ~2003
1014629579202925915910 ~2001
1014729563202945912710 ~2001
1014740399202948079910 ~2001
1014744179202948835910 ~2001
10147617892435428293711 ~2004
1014764171202952834310 ~2001
10147900971420706135911 ~2003
1014807203202961440710 ~2001
1014909743202981948710 ~2001
1014938081608962848710 ~2003
Exponent Prime Factor Digits Year
1014951779202990355910 ~2001
1014997871202999574310 ~2001
1015030463203006092710 ~2001
1015084121812067296910 ~2003
1015110599203022119910 ~2001
1015125311203025062310 ~2001
1015170337609102202310 ~2003
1015196921609118152710 ~2003
1015208231203041646310 ~2001
1015234739203046947910 ~2001
10152566335685437144911 ~2005
1015263311203052662310 ~2001
1015270859203054171910 ~2001
1015281941609169164710 ~2003
1015323059203064611910 ~2001
1015359797609215878310 ~2003
1015404443203080888710 ~2001
1015426799203085359910 ~2001
1015438331203087666310 ~2001
1015439701609263820710 ~2003
1015456153609273691910 ~2003
1015555043203111008710 ~2001
1015581821609349092710 ~2003
1015617041609370224710 ~2003
1015632119203126423910 ~2001
Exponent Prime Factor Digits Year
1015658411812526728910 ~2003
1015683637609410182310 ~2003
1015684223203136844710 ~2001
10156862931421960810311 ~2003
1015691399203138279910 ~2001
1015693223203138644710 ~2001
1015708019203141603910 ~2001
1015716623203143324710 ~2001
1015755683203151136710 ~2001
1015758323203151664710 ~2001
1015758899812607119310 ~2003
1015784879203156975910 ~2001
1015801511203160302310 ~2001
10159013892438163333711 ~2004
1015910039203182007910 ~2001
101596528910362845947912 ~2006
1015980659203196131910 ~2001
1016044439203208887910 ~2001
1016110691203222138310 ~2001
1016123519203224703910 ~2001
1016131631203226326310 ~2001
10162453571625992571311 ~2004
1016267723203253544710 ~2001
10163194574065277828111 ~2005
10163689435691666080911 ~2005
Home
4.768.925 digits
e-mail
25-05-04