Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1116648443223329688710 ~2002
1116719693670031815910 ~2003
1116727259223345451910 ~2002
1116756671223351334310 ~2002
11167603571786816571311 ~2004
1116787571223357514310 ~2002
1116825431223365086310 ~2002
11168286771563560147911 ~2004
1116832397893465917710 ~2003
1116833771223366754310 ~2002
1116845581670107348710 ~2003
1116849361670109616710 ~2003
1116903971223380794310 ~2002
1116989173670193503910 ~2003
11170000194691400079911 ~2005
1117012973670207783910 ~2003
1117020791223404158310 ~2002
1117027811223405562310 ~2002
1117048319223409663910 ~2002
1117072283223414456710 ~2002
1117111571223422314310 ~2002
1117127279223425455910 ~2002
1117129859223425971910 ~2002
1117149359223429871910 ~2002
11172337031787573924911 ~2004
Exponent Prime Factor Digits Year
11172437392681384973711 ~2004
1117296443223459288710 ~2002
1117424597670454758310 ~2003
1117462331223492466310 ~2002
1117483931223496786310 ~2002
1117495451223499090310 ~2002
1117552679223510535910 ~2002
11176009731564641362311 ~2004
1117614623223522924710 ~2002
11176443011788230881711 ~2004
1117651919223530383910 ~2002
11176625711117662571111 ~2003
1117708583223541716710 ~2002
11177208533353162559111 ~2005
1117725737670635442310 ~2003
11177740014247541203911 ~2005
1117828499223565699910 ~2002
1117832003223566400710 ~2002
1117836983223567396710 ~2002
1117839119223567823910 ~2002
1117903439223580687910 ~2002
1117904363223580872710 ~2002
1117914719223582943910 ~2002
1117917173670750303910 ~2003
1117930799223586159910 ~2002
Exponent Prime Factor Digits Year
11179791891565170864711 ~2004
1117987943223597588710 ~2002
1118001041670800624710 ~2003
1118063543223612708710 ~2002
1118070851223614170310 ~2002
1118075993670845595910 ~2003
1118077319223615463910 ~2002
1118083163223616632710 ~2002
1118110079223622015910 ~2002
11181174791118117479111 ~2003
1118139443223627888710 ~2002
1118139959223627991910 ~2002
11181474911118147491111 ~2003
1118182619223636523910 ~2002
1118195633670917379910 ~2003
11182364471789178315311 ~2004
1118245679223649135910 ~2002
1118268743223653748710 ~2002
1118332991223666598310 ~2002
1118334599223666919910 ~2002
1118336339223667267910 ~2002
1118359499223671899910 ~2002
11183818432907792791911 ~2004
111839466113197056999912 ~2006
1118431823223686364710 ~2002
Exponent Prime Factor Digits Year
1118440679223688135910 ~2002
1118473067894778453710 ~2003
1118494031223698806310 ~2002
1118499743223699948710 ~2002
1118567423223713484710 ~2002
11186648098949318472111 ~2006
1118683451223736690310 ~2002
1118720651223744130310 ~2002
1118731199223746239910 ~2002
1118740321671244192710 ~2003
1118768999223753799910 ~2002
11187894791118789479111 ~2003
1118823323223764664710 ~2002
1118868433671321059910 ~2003
1118944679223788935910 ~2002
1118984411223796882310 ~2002
1118987783223797556710 ~2002
1119026939223805387910 ~2002
1119032231223806446310 ~2002
1119042863223808572710 ~2002
1119073859223814771910 ~2002
1119124859223824971910 ~2002
1119126083223825216710 ~2002
1119127679223825535910 ~2002
1119141311223828262310 ~2002
Home
4.768.925 digits
e-mail
25-05-04