Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10108475993234712316911 ~2004
10109328011617492481711 ~2004
1010935357606561214310 ~2002
1010962031202192406310 ~2001
1010964197808771357710 ~2003
1011024997606614998310 ~2002
1011072383202214476710 ~2001
1011092363202218472710 ~2001
1011117323202223464710 ~2001
1011285059202257011910 ~2001
1011298117606778870310 ~2002
1011301943202260388710 ~2001
1011304139202260827910 ~2001
1011321131202264226310 ~2001
1011420983202284196710 ~2001
10114430117282389679311 ~2005
1011453263202290652710 ~2001
1011470483202294096710 ~2001
1011479519202295903910 ~2001
1011488099202297619910 ~2001
1011514643202302928710 ~2001
1011529703202305940710 ~2001
1011533051202306610310 ~2001
1011548519202309703910 ~2001
1011559319202311863910 ~2001
Exponent Prime Factor Digits Year
1011591671202318334310 ~2001
1011606191202321238310 ~2001
1011609301606965580710 ~2002
1011651383202330276710 ~2001
1011696599202339319910 ~2001
1011803099202360619910 ~2001
1011805937607083562310 ~2002
1011820217607092130310 ~2002
1011828481607097088710 ~2002
1011834119202366823910 ~2001
1011841021607104612710 ~2002
1011842483202368496710 ~2001
1011843863202368772710 ~2001
1011861971202372394310 ~2001
1011882023202376404710 ~2001
1011889337809511469710 ~2003
1011905243202381048710 ~2001
1011916799809533439310 ~2003
1011921899202384379910 ~2001
10119347471011934747111 ~2003
1012018613607211167910 ~2002
1012036933607222159910 ~2002
1012078451202415690310 ~2001
1012128059202425611910 ~2001
1012140791202428158310 ~2001
Exponent Prime Factor Digits Year
1012156511202431302310 ~2001
10121862911012186291111 ~2003
1012200191202440038310 ~2001
101223452310527239039312 ~2006
1012262903202452580710 ~2001
1012270991202454198310 ~2001
1012293311202458662310 ~2001
1012307039202461407910 ~2001
1012344059202468811910 ~2001
1012358003202471600710 ~2001
1012359371202471874310 ~2001
1012410419202482083910 ~2001
10124229771417392167911 ~2003
1012443203202488640710 ~2001
1012459081607475448710 ~2002
10124955433442484846311 ~2004
10125603713240193187311 ~2004
1012569839202513967910 ~2001
1012618283202523656710 ~2001
1012640561810112448910 ~2003
1012728179202545635910 ~2001
1012816979202563395910 ~2001
1012854659202570931910 ~2001
1012873271202574654310 ~2001
1012938293607762975910 ~2002
Exponent Prime Factor Digits Year
10129622171620739547311 ~2004
1012969883202593976710 ~2001
1012986059202597211910 ~2001
1012998719202599743910 ~2001
1013019071202603814310 ~2001
1013022599202604519910 ~2001
1013029931202605986310 ~2001
10130342632633889083911 ~2004
1013065583202613116710 ~2001
10130924171620947867311 ~2004
1013104091202620818310 ~2001
1013119753607871851910 ~2002
10131602872634216746311 ~2004
1013176001810540800910 ~2003
1013176583202635316710 ~2001
1013234723202646944710 ~2001
1013239919202647983910 ~2001
1013289143202657828710 ~2001
1013309903202661980710 ~2001
10133376171418672663911 ~2003
1013345699202669139910 ~2001
1013375339810700271310 ~2003
1013399063202679812710 ~2001
1013410631202682126310 ~2001
1013464799202692959910 ~2001
Home
4.768.925 digits
e-mail
25-05-04