Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1113869723222773944710 ~2002
11138705471782192875311 ~2004
1113885313668331187910 ~2003
1113917939222783587910 ~2002
1113923663222784732710 ~2002
1113978083222795616710 ~2002
1113979211222795842310 ~2002
11139860532673566527311 ~2004
1113991937891193549710 ~2003
1114044083222808816710 ~2002
1114046903222809380710 ~2002
1114055231222811046310 ~2002
1114155793668493475910 ~2003
1114168271222833654310 ~2002
1114234463222846892710 ~2002
1114237343222847468710 ~2002
1114276957668566174310 ~2003
11143099392674343853711 ~2004
11143120511114312051111 ~2003
1114323491222864698310 ~2002
11143355398246082988711 ~2005
1114339631222867926310 ~2002
1114344839222868967910 ~2002
1114360031222872006310 ~2002
1114386503222877300710 ~2002
Exponent Prime Factor Digits Year
1114437479222887495910 ~2002
1114494851222898970310 ~2002
1114506839222901367910 ~2002
1114524053668714431910 ~2003
1114556753668734051910 ~2003
1114598759222919751910 ~2002
1114615913668769547910 ~2003
1114662431222932486310 ~2002
1114728551222945710310 ~2002
1114732343222946468710 ~2002
1114756211222951242310 ~2002
1114756943222951388710 ~2002
11147743571783638971311 ~2004
11147836272006610528711 ~2004
1114789079891831263310 ~2003
1114796093668877655910 ~2003
11148023572675525656911 ~2004
1114871603222974320710 ~2002
1114884371222976874310 ~2002
1114903343222980668710 ~2002
1114972139222994427910 ~2002
1114983323222996664710 ~2002
1115009531223001906310 ~2002
1115011811223002362310 ~2002
1115065859223013171910 ~2002
Exponent Prime Factor Digits Year
1115085371223017074310 ~2002
1115111951892089560910 ~2003
1115117819223023563910 ~2002
1115123677669074206310 ~2003
1115137979223027595910 ~2002
1115162663223032532710 ~2002
1115163911223032782310 ~2002
1115207711223041542310 ~2002
1115208683223041736710 ~2002
1115233331223046666310 ~2002
1115257211223051442310 ~2002
1115258099223051619910 ~2002
1115261879223052375910 ~2002
1115296163223059232710 ~2002
1115349299223069859910 ~2002
1115359139223071827910 ~2002
1115394257892315405710 ~2003
1115466323223093264710 ~2002
1115483123223096624710 ~2002
1115512093669307255910 ~2003
1115540291223108058310 ~2002
1115600273669360163910 ~2003
1115631971223126394310 ~2002
1115683139223136627910 ~2002
1115716139223143227910 ~2002
Exponent Prime Factor Digits Year
11157203693347161107111 ~2005
1115770451223154090310 ~2002
1115795341669477204710 ~2003
1115805851223161170310 ~2002
1115853059223170611910 ~2002
1115916611223183322310 ~2002
11160517372678524168911 ~2004
1116087611223217522310 ~2002
1116092639223218527910 ~2002
1116153191223230638310 ~2002
1116188219223237643910 ~2002
1116192719223238543910 ~2002
1116201371223240274310 ~2002
1116204101669722460710 ~2003
1116220811223244162310 ~2002
11162252471785960395311 ~2004
11163486891562888164711 ~2004
111638780327016584832712 ~2007
11164024394465609756111 ~2005
1116514103223302820710 ~2002
1116542761669925656710 ~2003
1116552179223310435910 ~2002
11165547433796286126311 ~2005
1116581951223316390310 ~2002
1116628979223325795910 ~2002
Home
4.768.925 digits
e-mail
25-05-04