Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1077363671215472734310 ~2002
1077364943215472988710 ~2002
1077409103215481820710 ~2002
1077421811215484362310 ~2002
1077438839215487767910 ~2002
1077455243215491048710 ~2002
1077472211215494442310 ~2002
1077477899215495579910 ~2002
1077500999215500199910 ~2002
1077518831215503766310 ~2002
1077530939215506187910 ~2002
1077547463215509492710 ~2002
10776289391939732090311 ~2004
1077655079215531015910 ~2002
1077680603215536120710 ~2002
1077681287862145029710 ~2003
1077682391862145912910 ~2003
107771603912932592468112 ~2006
1077818243215563648710 ~2002
1077875411215575082310 ~2002
1077928619215585723910 ~2002
10779355271077935527111 ~2003
1077974759215594951910 ~2002
1077978337646787002310 ~2003
1078017443215603488710 ~2002
Exponent Prime Factor Digits Year
1078038971215607794310 ~2002
1078057199215611439910 ~2002
1078135823215627164710 ~2002
1078164011215632802310 ~2002
1078184843215636968710 ~2002
1078245719215649143910 ~2002
1078278143215655628710 ~2002
1078279199215655839910 ~2002
1078336403215667280710 ~2002
1078393271215678654310 ~2002
1078423751215684750310 ~2002
1078424159215684831910 ~2002
1078488197647092918310 ~2003
1078495163215699032710 ~2002
1078572623215714524710 ~2002
1078594457647156674310 ~2003
1078609657647165794310 ~2003
1078646483215729296710 ~2002
1078656959215731391910 ~2002
1078678379215735675910 ~2002
1078715051215743010310 ~2002
1078771931215754386310 ~2002
10787796973236339091111 ~2004
1078815323215763064710 ~2002
1078819103215763820710 ~2002
Exponent Prime Factor Digits Year
10788773834531285008711 ~2005
1078894559215778911910 ~2002
1078910603215782120710 ~2002
1078934039215786807910 ~2002
10789354218415696283911 ~2005
1078979921647387952710 ~2003
1079073503215814700710 ~2002
1079118251215823650310 ~2002
1079133911215826782310 ~2002
1079181431215836286310 ~2002
1079186819215837363910 ~2002
10791885671942539420711 ~2004
10792135791942584442311 ~2004
1079231591863385272910 ~2003
1079264111215852822310 ~2002
1079369111215873822310 ~2002
1079393099215878619910 ~2002
1079396933647638159910 ~2003
1079406719215881343910 ~2002
10794467272806561490311 ~2004
1079496059215899211910 ~2002
1079513639215902727910 ~2002
1079519783215903956710 ~2002
1079523743215904748710 ~2002
1079560739215912147910 ~2002
Exponent Prime Factor Digits Year
1079564357647738614310 ~2003
1079708099215941619910 ~2002
1079718713647831227910 ~2003
1079762291215952458310 ~2002
1079788091215957618310 ~2002
1079799911215959982310 ~2002
1079826623215965324710 ~2002
1079849951215969990310 ~2002
1079851379215970275910 ~2002
1079886851215977370310 ~2002
1079913071215982614310 ~2002
1079916731215983346310 ~2002
1079946011215989202310 ~2002
1080033937648020362310 ~2003
1080090059216018011910 ~2002
1080129971216025994310 ~2002
1080130643216026128710 ~2002
1080163121648097872710 ~2003
10801899071080189907111 ~2003
1080239519216047903910 ~2002
1080262031216052406310 ~2002
1080284813648170887910 ~2003
1080306659216061331910 ~2002
1080316271216063254310 ~2002
1080338459216067691910 ~2002
Home
4.724.182 digits
e-mail
25-04-13