Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3089253596178507199 ~1997
3089368196178736399 ~1997
3089456036178912079 ~1997
3089462996178925999 ~1997
3089472116178944239 ~1997
3089550716179101439 ~1997
3089616192533485275911 ~2001
3089800436179600879 ~1997
308980157185388094310 ~1998
3089854316179708639 ~1997
309000961185400576710 ~1998
3090223316180446639 ~1997
3090241196180482399 ~1997
3090349316180698639 ~1997
3090354596180709199 ~1997
3090418196180836399 ~1997
3090418796180837599 ~1997
3090498836180997679 ~1997
3090508316181016639 ~1997
3090520916181041839 ~1997
309057013185434207910 ~1998
3090602996181205999 ~1997
3090729836181459679 ~1997
3090789236181578479 ~1997
3090842036181684079 ~1997
Exponent Prime Factor Digits Year
3090850796181701599 ~1997
3090864836181729679 ~1997
3090867596181735199 ~1997
3090977516181955039 ~1997
3091262996182525999 ~1997
309128759247303007310 ~1999
3091325636182651279 ~1997
3091380596182761199 ~1997
3091403996182807999 ~1997
3091477196182954399 ~1997
3091537916183075839 ~1997
3091615916183231839 ~1997
3091624436183248879 ~1997
3091652036183304079 ~1997
3091670516183341039 ~1997
3091691636183383279 ~1997
309175561185505336710 ~1998
309178577432850007910 ~1999
3091810796183621599 ~1997
3091814036183628079 ~1997
3091829036183658079 ~1997
3091858436183716879 ~1997
309186931309186931110 ~1999
3091869596183739199 ~1997
3091914836183829679 ~1997
Exponent Prime Factor Digits Year
309194383309194383110 ~1999
3091954316183908639 ~1997
3092140916184281839 ~1997
3092173796184347599 ~1997
3092247116184494239 ~1997
309226781185536068710 ~1998
309248447742196272910 ~2000
309260807247408645710 ~1999
3092760836185521679 ~1997
3092776916185553839 ~1997
3093005531979523539311 ~2001
3093041996186083999 ~1997
309304693185582815910 ~1998
3093212516186425039 ~1997
309329533185597719910 ~1998
309334001247467200910 ~1999
3093378596186757199 ~1997
3093390596186781199 ~1997
309346439247477151310 ~1999
3093477716186955439 ~1997
3093553796187107599 ~1997
3093600596187201199 ~1997
309360089247488071310 ~1999
309362041185617224710 ~1998
3093708236187416479 ~1997
Exponent Prime Factor Digits Year
3093812396187624799 ~1997
309398627804436430310 ~2000
309408553742580527310 ~2000
309414473185648683910 ~1998
3094168796188337599 ~1997
309418297185650978310 ~1998
3094247996188495999 ~1997
3094255916188511839 ~1997
309425801185655480710 ~1998
309429293185657575910 ~1998
309431981247545584910 ~1999
3094320236188640479 ~1997
3094333916188667839 ~1997
3094363316188726639 ~1997
309437803309437803110 ~1999
309439331804542260710 ~2000
3094445396188890799 ~1997
3094494116188988239 ~1997
3094526516189053039 ~1997
3094622996189245999 ~1997
309464521928393563110 ~2000
3094674236189348479 ~1997
3094712516189425039 ~1997
3094718636189437279 ~1997
3094771316189542639 ~1997
Home
4.724.182 digits
e-mail
25-04-13