Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
294619799235695839310 ~1999
2946206995892413999 ~1997
2946287395892574799 ~1997
2946371635892743279 ~1997
2946436315892872639 ~1997
2946510835893021679 ~1997
2946531235893062479 ~1997
2946672115893344239 ~1997
2946729071001887883911 ~2000
294674981176804988710 ~1998
294686459235749167310 ~1999
294689957235751965710 ~1999
294690497412566695910 ~1999
294699401235759520910 ~1999
2946996595893993199 ~1997
2947043635894087279 ~1997
2947055035894110079 ~1997
2947057915894115839 ~1997
2947088995894177999 ~1997
2947119715894239439 ~1997
2947128715894257439 ~1997
294713011294713011110 ~1999
294713987235771189710 ~1999
2947179715894359439 ~1997
2947206235894412479 ~1997
Exponent Prime Factor Digits Year
2947329835894659679 ~1997
2947330315894660639 ~1997
2947339195894678399 ~1997
2947434115894868239 ~1997
2947445035894890079 ~1997
2947585315895170639 ~1997
294763907707433376910 ~2000
2947722235895444479 ~1997
2947805995895611999 ~1997
294817333176890399910 ~1998
2948188315896376639 ~1997
2948197195896394399 ~1997
294831499530696698310 ~1999
2948368195896736399 ~1997
294838553412773974310 ~1999
2948511715897023439 ~1997
294863953176918371910 ~1998
2948913235897826479 ~1997
2948960395897920799 ~1997
294896201235916960910 ~1999
294898529235918823310 ~1999
2949063235898126479 ~1997
2949068635898137279 ~1997
2949070435898140879 ~1997
294907637176944582310 ~1998
Exponent Prime Factor Digits Year
2949199915898399839 ~1997
2949273595898547199 ~1997
2949385195898770399 ~1997
2949443995898887999 ~1997
294945697176967418310 ~1998
2949603115899206239 ~1997
2949655818259036268111 ~2002
294969347235975477710 ~1999
294979961176987976710 ~1998
294982097235985677710 ~1999
2949923035899846079 ~1997
2949924132831927164911 ~2001
2949939835899879679 ~1997
294995161176997096710 ~1998
2949980515899961039 ~1997
295000037177000022310 ~1998
295018303472029284910 ~1999
295021589413030224710 ~1999
2950263835900527679 ~1997
2950292395900584799 ~1997
2950421035900842079 ~1997
295053089236042471310 ~1999
295059673177035803910 ~1998
2950685035901370079 ~1997
295069081177041448710 ~1998
Exponent Prime Factor Digits Year
295077017177046210310 ~1998
2950796395901592799 ~1997
2950884835901769679 ~1997
2950911835901823679 ~1997
295096097177057658310 ~1998
2950973995901947999 ~1997
2951094115902188239 ~1997
2951135035902270079 ~1997
2951266799975281750311 ~2003
295134373177080623910 ~1998
295145237236116189710 ~1999
295155893177093535910 ~1998
2951582635903165279 ~1997
2951616835903233679 ~1997
2951634835903269679 ~1997
2951699395903398799 ~1997
2951817595903635199 ~1997
295182359236145887310 ~1999
295185547295185547110 ~1999
2952254995904509999 ~1997
2952276835904553679 ~1997
295232261177139356710 ~1998
2952346195904692399 ~1997
2952369715904739439 ~1997
29523875331885785324112 ~2004
Home
4.768.925 digits
e-mail
25-05-04