Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
295246841236197472910 ~1999
2952486715904973439 ~1997
295257401177154440710 ~1998
295260613472416980910 ~1999
295261721177157032710 ~1998
2952627115905254239 ~1997
295264423295264423110 ~1999
2952700915905401839 ~1997
2952743635905487279 ~1997
295276673177166003910 ~1998
2952819115905638239 ~1997
2952983035905966079 ~1997
2953022395906044799 ~1997
2953169995906339999 ~1997
295322119708773085710 ~2000
2953242835906485679 ~1997
2953259035906518079 ~1997
2953348435906696879 ~1997
2953392595906785199 ~1997
2953596115907192239 ~1997
2953648631181459452111 ~2000
2953993435907986879 ~1997
2953996915907993839 ~1997
2953999915907999839 ~1997
295411033472657652910 ~1999
Exponent Prime Factor Digits Year
2954164195908328399 ~1997
2954220595908441199 ~1997
2954256595908513199 ~1997
2954280115908560239 ~1997
2954358235908716479 ~1997
2954427835908855679 ~1997
2954454835908909679 ~1997
295453201649997042310 ~2000
2954811715909623439 ~1997
2954954635909909279 ~1997
2954990635909981279 ~1997
295514053472822484910 ~1999
2955175315910350639 ~1997
2955239995910479999 ~1997
295535249413749348710 ~1999
2955371995910743999 ~1997
2955408595910817199 ~1997
295561157177336694310 ~1998
2955651835911303679 ~1997
295570981177342588710 ~1998
2955729712364583768111 ~2001
2955739915911479839 ~1997
295583503472933604910 ~1999
2955952915911905839 ~1997
2956147435912294879 ~1997
Exponent Prime Factor Digits Year
2956195435912390879 ~1997
2956235395912470799 ~1997
2956384195912768399 ~1997
2956387195912774399 ~1997
2956510915913021839 ~1997
2956559395913118799 ~1997
295660201177396120710 ~1998
2956633315913266639 ~1997
2956647835913295679 ~1997
295666711295666711110 ~1999
295671631295671631110 ~1999
2956897915913795839 ~1997
2956908595913817199 ~1997
2956954435913908879 ~1997
2957048035914096079 ~1997
295707611236566088910 ~1999
2957136115914272239 ~1997
2957181835914363679 ~1997
2957186515914373039 ~1997
295720739532297330310 ~1999
2957248795914497599 ~1997
2957412235914824479 ~1997
295745237177447142310 ~1998
2957453995914907999 ~1997
2957464915914929839 ~1997
Exponent Prime Factor Digits Year
295768961177461376710 ~1998
2957798813253578691111 ~2001
2957813995915627999 ~1997
295785613177471367910 ~1998
2957907235915814479 ~1997
295793339236634671310 ~1999
2957945995915891999 ~1997
2957985235915970479 ~1997
2958051835916103679 ~1997
2958144235916288479 ~1997
2958163435916326879 ~1997
2958228115916456239 ~1997
2958236035916472079 ~1997
2958255835916511679 ~1997
2958309115916618239 ~1997
295841573414178202310 ~1999
295847641473356225710 ~1999
295850537414190751910 ~1999
2958536995917073999 ~1997
2958639835917279679 ~1997
295864021177518412710 ~1998
2958676195917352399 ~1997
2958695035917390079 ~1997
295881437887644311110 ~2000
2958875635917751279 ~1997
Home
4.768.925 digits
e-mail
25-05-04