Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3094878836189757679 ~1997
3094906196189812399 ~1997
309495877742790104910 ~2000
3094969316189938639 ~1997
309497381185698428710 ~1998
3095019116190038239 ~1997
3095051516190103039 ~1997
309517639309517639110 ~1999
309527333185716399910 ~1998
3095319236190638479 ~1997
309533377185720026310 ~1998
309543167247634533710 ~1999
3095513036191026079 ~1997
3095597036191194079 ~1997
3095695316191390639 ~1997
3095919236191838479 ~1997
3095925716191851439 ~1997
3096048116192096239 ~1997
309623959309623959110 ~1999
3096241316192482639 ~1997
309637193185782315910 ~1998
3096376316192752639 ~1997
3096435716192871439 ~1997
3096438116192876239 ~1997
309653917185792350310 ~1998
Exponent Prime Factor Digits Year
309668221185800932710 ~1998
3096724796193449599 ~1997
3096771116193542239 ~1997
309685361185811216710 ~1998
3096872396193744799 ~1997
309692237433569131910 ~1999
3096966596193933199 ~1997
309701599309701599110 ~1999
3097017836194035679 ~1997
3097085516194171039 ~1997
3097134836194269679 ~1997
3097158836194317679 ~1997
3097164836194329679 ~1997
3097176236194352479 ~1997
3097176716194353439 ~1997
3097277396194554799 ~1997
3097329716194659439 ~1997
3097340636194681279 ~1997
3097389836194779679 ~1997
3097441916194883839 ~1997
3097489796194979599 ~1997
3097614236195228479 ~1997
309771017185862610310 ~1998
3097748636195497279 ~1997
3097793396195586799 ~1997
Exponent Prime Factor Digits Year
3097800116195600239 ~1997
309802177185881306310 ~1998
3098066036196132079 ~1997
3098281436196562879 ~1997
309833521185900112710 ~1998
3098346596196693199 ~1997
309841669929525007110 ~2000
3098433236196866479 ~1997
309843973185906383910 ~1998
309844357743626456910 ~2000
309855883309855883110 ~1999
309870479247896383310 ~1999
3098726396197452799 ~1997
3098873516197747039 ~1997
309891353185934811910 ~1998
3098962213718754652111 ~2002
3099094196198188399 ~1997
3099300116198600239 ~1997
3099317036198634079 ~1997
309934481185960688710 ~1998
3099350636198701279 ~1997
3099490196198980399 ~1997
3099626996199253999 ~1997
309976133185985679910 ~1998
309986137185991682310 ~1998
Exponent Prime Factor Digits Year
3100162796200325599 ~1997
3100196036200392079 ~1997
3100234196200468399 ~1997
3100244396200488799 ~1997
3100260236200520479 ~1997
3100277996200555999 ~1997
310028533186017119910 ~1998
3100341116200682239 ~1997
3100363331240145332111 ~2000
3100396796200793599 ~1997
310049813186029887910 ~1998
3100521596201043199 ~1997
3100589516201179039 ~1997
3100663316201326639 ~1997
310079851310079851110 ~1999
3100961516201923039 ~1997
3101010596202021199 ~1997
3101117516202235039 ~1997
3101166716202333439 ~1997
310118293186070975910 ~1998
3101187716202375439 ~1997
3101195036202390079 ~1997
310120073186072043910 ~1998
3101256596202513199 ~1997
3101287196202574399 ~1997
Home
4.724.182 digits
e-mail
25-04-13