Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
293975681176385408710 ~1998
293978599293978599110 ~1999
2939802591234717087911 ~2000
2939929315879858639 ~1997
2939958115879916239 ~1997
2940012715880025439 ~1997
294009293176405575910 ~1998
2940287395880574799 ~1997
2940332035880664079 ~1997
2940339235880678479 ~1997
2940391435880782879 ~1997
2940419635880839279 ~1997
2940440995880881999 ~1997
2940455995880911999 ~1997
294047921176428752710 ~1998
294048809705717141710 ~2000
2940571915881143839 ~1997
2940598795881197599 ~1997
294060631294060631110 ~1999
2940653635881307279 ~1997
2940668635881337279 ~1997
294086467705807520910 ~2000
2940938515881877039 ~1997
294097933705835039310 ~2000
294105239235284191310 ~1999
Exponent Prime Factor Digits Year
2941115635882231279 ~1997
294111581235289264910 ~1999
294124793176474875910 ~1998
294128687764734586310 ~2000
2941437715882875439 ~1997
2941481995882963999 ~1997
2941500715883001439 ~1997
2941509115883018239 ~1997
2941512715883025439 ~1997
2941689715883379439 ~1997
2941753795883507599 ~1997
2941855195883710399 ~1997
2941858915883717839 ~1997
294190331235352264910 ~1999
2941936315883872639 ~1997
2941951795883903599 ~1997
2942169115884338239 ~1997
2942222515884445039 ~1997
294223597176534158310 ~1998
294230039706152093710 ~2000
2942318515884637039 ~1997
2942321995884643999 ~1997
2942336992118482632911 ~2001
2942428915884857839 ~1997
2942502595885005199 ~1997
Exponent Prime Factor Digits Year
2942600035885200079 ~1997
2942638915885277839 ~1997
2942664115885328239 ~1997
2942741532825031868911 ~2001
294274741176564844710 ~1998
2942787115885574239 ~1997
2942824795885649599 ~1997
2942866611824577298311 ~2001
294290831765156160710 ~2000
29430055115597929203112 ~2003
294302467294302467110 ~1999
294309853176585911910 ~1998
2943123835886247679 ~1997
2943213835886427679 ~1997
2943274315886548639 ~1997
2943288835886577679 ~1997
294329089647523995910 ~2000
2943386871648296647311 ~2001
294356813176614087910 ~1998
2943683515887367039 ~1997
2943777115887554239 ~1997
2943799195887598399 ~1997
2943825595887651199 ~1997
2943969835887939679 ~1997
2943999715887999439 ~1997
Exponent Prime Factor Digits Year
2944016035888032079 ~1997
2944072195888144399 ~1997
2944127635888255279 ~1997
2944170835888341679 ~1997
2944320235888640479 ~1997
2944473715888947439 ~1997
2944613515889227039 ~1997
2944626115889252239 ~1997
2945122435890244879 ~1997
2945128435890256879 ~1997
2945202491178080996111 ~2000
2945218915890437839 ~1997
294540593176724355910 ~1998
2945432395890864799 ~1997
2945699035891398079 ~1997
2945774712592281744911 ~2001
2945812795891625599 ~1997
2945827315891654639 ~1997
2946005635892011279 ~1997
2946042835892085679 ~1997
2946070915892141839 ~1997
2946078715892157439 ~1997
294610369648142811910 ~2000
2946126835892253679 ~1997
294619621471391393710 ~1999
Home
4.768.925 digits
e-mail
25-05-04