Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
290663987232531189710 ~1999
290665321174399192710 ~1998
2906660395813320799 ~1997
2906669635813339279 ~1997
290671037406939451910 ~1999
2906736115813472239 ~1997
290679797174407878310 ~1998
2906864995813729999 ~1997
290698649406978108710 ~1999
2907062635814125279 ~1997
2907195715814391439 ~1997
290734117174440470310 ~1998
2907429835814859679 ~1997
290745673465193076910 ~1999
2907525235815050479 ~1997
2907647515815295039 ~1997
2907661915815323839 ~1997
2907683635815367279 ~1997
2907718435815436879 ~1997
2907746395815492799 ~1997
2907777715815555439 ~1997
2907780115815560239 ~1997
2907837115815674239 ~1997
2907948595815897199 ~1997
290800949232640759310 ~1999
Exponent Prime Factor Digits Year
2908017235816034479 ~1997
2908022515816045039 ~1997
2908032235816064479 ~1997
2908055035816110079 ~1997
2908445635816891279 ~1997
2908615795817231599 ~1997
2908636915817273839 ~1997
2908643035817286079 ~1997
2908654795817309599 ~1997
2908707115817414239 ~1997
290872073407220902310 ~1999
2908741795817483599 ~1997
290877311232701848910 ~1999
2908894915817789839 ~1997
290902979930889532910 ~2000
2909075635818151279 ~1997
2909082235818164479 ~1997
2909146915818293839 ~1997
290916517174549910310 ~1998
2909464795818929599 ~1997
2909472715818945439 ~1997
2909483035818966079 ~1997
290960441174576264710 ~1998
2909628235819256479 ~1997
290965877407352227910 ~1999
Exponent Prime Factor Digits Year
290967671232774136910 ~1999
2909763595819527199 ~1997
2909839435819678879 ~1997
2910030715820061439 ~1997
291012017232809613710 ~1999
2910200635820401279 ~1997
2910205195820410399 ~1997
2910210235820420479 ~1997
291022321174613392710 ~1998
2910640195821280399 ~1997
2910761395821522799 ~1997
2910909115821818239 ~1997
2910943435821886879 ~1997
291095737465753179310 ~1999
2911014835822029679 ~1997
291107953640437496710 ~2000
291117583291117583110 ~1999
291126467524027640710 ~1999
2911288195822576399 ~1997
2911293835822587679 ~1997
2911361995822723999 ~1997
2911487035822974079 ~1997
2911501315823002639 ~1997
2911520035823040079 ~1997
2911546915823093839 ~1997
Exponent Prime Factor Digits Year
291155237174693142310 ~1998
2911685515823371039 ~1997
2911703035823406079 ~1997
291172333174703399910 ~1998
291175517232940413710 ~1999
2911762795823525599 ~1997
291186073174711643910 ~1998
2911877035823754079 ~1997
2911942315823884639 ~1997
291218651232974920910 ~1999
291221761465954817710 ~1999
291248339232998671310 ~1999
2912497195824994399 ~1997
2912500795825001599 ~1997
291252557699006136910 ~2000
291257861174754716710 ~1998
291274859699059661710 ~2000
2912785795825571599 ~1997
2912792035825584079 ~1997
2912900635825801279 ~1997
291293251466069201710 ~1999
2913001091165200436111 ~2000
2913166915826333839 ~1997
291319013174791407910 ~1998
2913261595826523199 ~1997
Home
4.768.925 digits
e-mail
25-05-04