Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1823825033647650079 ~1996
1823892113647784239 ~1996
1823915513647831039 ~1996
1823930633647861279 ~1996
182396531145917224910 ~1997
1823967833647935679 ~1996
1823979833647959679 ~1996
1823982593647965199 ~1996
1824044993648089999 ~1996
182404801109442880710 ~1997
1824087713648175439 ~1996
182409917109445950310 ~1997
1824163131021531352911 ~1999
182419157109451494310 ~1997
1824199433648398879 ~1996
182424409875637163310 ~1999
1824289433648578879 ~1996
1824328193648656399 ~1996
182435741109461444710 ~1997
1824357833648715679 ~1996
182436557109461934310 ~1997
1824375713648751439 ~1996
182438077109462846310 ~1997
1824418793648837599 ~1996
1824466193648932399 ~1996
Exponent Prime Factor Digits Year
1824471233648942479 ~1996
1824508193649016399 ~1996
182455901145964720910 ~1997
182457167145965733710 ~1997
1824621233649242479 ~1996
182468417109481050310 ~1997
1824692993649385999 ~1996
1824693833649387679 ~1996
182472887145978309710 ~1997
1824758513649517039 ~1996
1824762713649525439 ~1996
1824769193649538399 ~1996
182479777109487866310 ~1997
1824810593649621199 ~1996
1824863033649726079 ~1996
1824902393649804799 ~1996
182491961145993568910 ~1997
182493797145995037710 ~1997
1825028393650056799 ~1996
1825044113650088239 ~1996
1825134593650269199 ~1996
182515049146012039310 ~1997
1825152713650305439 ~1996
1825169633650339279 ~1996
1825186313650372639 ~1996
Exponent Prime Factor Digits Year
182521819328539274310 ~1998
1825259633650519279 ~1996
1825265633650531279 ~1996
1825292835548890203311 ~2001
1825306433650612879 ~1996
1825315793650631599 ~1996
1825392233650784479 ~1996
182547737255566831910 ~1998
1825543433651086879 ~1996
1825545233651090479 ~1996
1825545833651091679 ~1996
1825595513651191039 ~1996
182562277109537366310 ~1997
1825623233651246479 ~1996
1825631033651262079 ~1996
1825689833651379679 ~1996
182574911146059928910 ~1997
182575697109545418310 ~1997
1825798793651597599 ~1996
182582633109549579910 ~1997
1825951313651902639 ~1996
182597537109558522310 ~1997
182604671146083736910 ~1997
1826076713652153439 ~1996
182614589146091671310 ~1997
Exponent Prime Factor Digits Year
1826211713652423439 ~1996
182623433584394985710 ~1998
182623873109574323910 ~1997
182624501109574700710 ~1997
1826262113652524239 ~1996
1826269913652539839 ~1996
1826352233652704479 ~1996
1826357633652715279 ~1996
182636281109581768710 ~1997
1826412233652824479 ~1996
1826421713652843439 ~1996
1826458913652917839 ~1996
1826561633653123279 ~1996
1826569313653138639 ~1996
182657131328782835910 ~1998
182659187438382048910 ~1998
1826610713653221439 ~1996
1826614433653228879 ~1996
1826622833653245679 ~1996
1826629193653258399 ~1996
1826647211315185991311 ~1999
1826676233653352479 ~1996
182671081548013243110 ~1998
1826721593653443199 ~1996
1826732513653465039 ~1996
Home
5.307.017 digits
e-mail
26-01-11