Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
270830207487494372710 ~1999
2708393395416786799 ~1997
270840373162504223910 ~1998
270842179270842179110 ~1999
2708453395416906799 ~1997
2708460115416920239 ~1997
270851167487532100710 ~1999
2708552515417105039 ~1997
2708601235417202479 ~1997
2708703291462699776711 ~2000
270870557162522334310 ~1998
2708792931462748182311 ~2000
2708807515417615039 ~1997
2708899915417799839 ~1997
2708922115417844239 ~1997
2708924635417849279 ~1997
270906473379269062310 ~1999
2709070795418141599 ~1997
2709145435418290879 ~1997
2709251395418502799 ~1997
2709289195418578399 ~1997
2709448795418897599 ~1997
2709554635419109279 ~1997
2709678715419357439 ~1997
2709844435419688879 ~1997
Exponent Prime Factor Digits Year
270993377216794701710 ~1998
2710083595420167199 ~1997
2710119191734476281711 ~2001
2710154995420309999 ~1997
2710164235420328479 ~1997
271032653162619591910 ~1998
2710386235420772479 ~1997
2710481395420962799 ~1997
2710532395421064799 ~1997
2710559515421119039 ~1997
2710566835421133679 ~1997
2710644115421288239 ~1997
271066157162639694310 ~1998
2710806715421613439 ~1997
271090033162654019910 ~1998
2710986235421972479 ~1997
2711005195422010399 ~1997
2711010731897707511111 ~2001
2711033515422067039 ~1997
271124681162674808710 ~1998
2711341195422682399 ~1997
271145921162687552710 ~1998
2711477635422955279 ~1997
271151401162690840710 ~1998
271152571488074627910 ~1999
Exponent Prime Factor Digits Year
271155281216924224910 ~1998
2711568835423137679 ~1997
2711608195423216399 ~1997
2711614315423228639 ~1997
271161481162696888710 ~1998
2711698915423397839 ~1997
271182391488128303910 ~1999
271194701216955760910 ~1998
2712030715424061439 ~1997
2712089995424179999 ~1997
2712115795424231599 ~1997
271211821433938913710 ~1999
271211959271211959110 ~1999
2712145435424290879 ~1997
2712163315424326639 ~1997
2712201715424403439 ~1997
271222361216977888910 ~1998
2712226315424452639 ~1997
271245809216996647310 ~1998
271266581162759948710 ~1998
2712837835425675679 ~1997
271284311217027448910 ~1998
2712860035425720079 ~1997
271290421162774252710 ~1998
2712949315425898639 ~1997
Exponent Prime Factor Digits Year
271302719217042175310 ~1998
271303861162782316710 ~1998
271306171271306171110 ~1999
2713120915426241839 ~1997
2713220395426440799 ~1997
271324457162794674310 ~1998
271330181217064144910 ~1998
2713420315426840639 ~1997
2713451035426902079 ~1997
2713540915427081839 ~1997
271356697162814018310 ~1998
2713600915427201839 ~1997
2713610395427220799 ~1997
271363031488453455910 ~1999
2713649035427298079 ~1997
271366913162820147910 ~1998
2713674835427349679 ~1997
271367909379915072710 ~1999
2713770595427541199 ~1997
2713788235427576479 ~1997
2713838035427676079 ~1997
2713970995427941999 ~1997
271403221162841932710 ~1998
2714116915428233839 ~1997
2714149315428298639 ~1997
Home
4.724.182 digits
e-mail
25-04-13