Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2702731691891912183111 ~2001
2702770195405540399 ~1997
270283241216226592910 ~1998
2702872195405744399 ~1997
270287911270287911110 ~1999
270288383702749795910 ~2000
2702892235405784479 ~1997
270292147270292147110 ~1999
270314953162188971910 ~1998
2703222715406445439 ~1997
2703233515406467039 ~1997
2703293035406586079 ~1997
270334633162200779910 ~1998
270338351216270680910 ~1998
270360187432576299310 ~1999
270363677162218206310 ~1998
2703788515407577039 ~1997
270389593162233755910 ~1998
270390721162234432710 ~1998
2703928931081571572111 ~2000
2703947635407895279 ~1997
270395687216316549710 ~1998
2704004995408009999 ~1997
2704007035408014079 ~1997
2704298395408596799 ~1997
Exponent Prime Factor Digits Year
27043148927908529664912 ~2003
2704334515408669039 ~1997
2704351315408702639 ~1997
2704526035409052079 ~1997
2704547035409094079 ~1997
2704575595409151199 ~1997
2704618195409236399 ~1997
2704662715409325439 ~1997
270467459649121901710 ~1999
2704747315409494639 ~1997
270480451270480451110 ~1999
2704821835409643679 ~1997
2704841395409682799 ~1997
2704848715409697439 ~1997
270489521216391616910 ~1998
2705152435410304879 ~1997
270521401162312840710 ~1998
2705217115410434239 ~1997
2705232835410465679 ~1997
2705326315410652639 ~1997
270541291432866065710 ~1999
270542219216433775310 ~1998
2705618395411236799 ~1997
2705693035411386079 ~1997
2705721115411442239 ~1997
Exponent Prime Factor Digits Year
270580199216464159310 ~1998
2705839915411679839 ~1997
2705846035411692079 ~1997
270586931865878179310 ~2000
2705899195411798399 ~1997
2705940595411881199 ~1997
2705960995411921999 ~1997
270606101162363660710 ~1998
2706068871515398567311 ~2000
2706198835412397679 ~1997
270622613162373567910 ~1998
2706263515412527039 ~1997
270633161216506528910 ~1998
2706429595412859199 ~1997
270645413162387247910 ~1998
270646967216517573710 ~1998
2706479995412959999 ~1997
2706542395413084799 ~1997
2706596635413193279 ~1997
2706664795413329599 ~1997
270667051270667051110 ~1999
2706712315413424639 ~1997
2706717835413435679 ~1997
2706857035413714079 ~1997
2706963235413926479 ~1997
Exponent Prime Factor Digits Year
2707011115414022239 ~1997
2707035235414070479 ~1997
2707146835414293679 ~1997
270720641162432384710 ~1998
2707350715414701439 ~1997
2707364635414729279 ~1997
270736573162441943910 ~1998
2707482595414965199 ~1997
2707512235415024479 ~1997
270752437162451462310 ~1998
2707579195415158399 ~1997
2707670995415341999 ~1997
270769481162461688710 ~1998
270771643433234628910 ~1999
270774859920634520710 ~2000
270780733812342199110 ~2000
2707831195415662399 ~1997
2707854235415708479 ~1997
270790781162474468710 ~1998
270794297162476578310 ~1998
270808913162485347910 ~1998
2708115595416231199 ~1997
2708208115416416239 ~1997
2708267995416535999 ~1997
2708298595416597199 ~1997
Home
4.724.182 digits
e-mail
25-04-13