Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2182124994364249999 ~1996
2182137834364275679 ~1996
2182152234364304479 ~1996
2182269234364538479 ~1996
218231719741987844710 ~1999
2182324314364648639 ~1996
218232877130939726310 ~1997
2182445034364890079 ~1996
218245493130947295910 ~1997
2182504194365008399 ~1996
2182521234365042479 ~1996
2182530114365060239 ~1996
2182595514365191039 ~1996
2182619514365239039 ~1996
2182621794365243599 ~1996
218262251174609800910 ~1998
218264231174611384910 ~1998
218273621130964172710 ~1997
218284249480225347910 ~1999
2182863114365726239 ~1996
2182872714365745439 ~1996
2182893594365787199 ~1996
218290507218290507110 ~1998
2182954314365908639 ~1996
2182978794365957599 ~1996
Exponent Prime Factor Digits Year
218298317305617643910 ~1998
2182996194365992399 ~1996
2183009634366019279 ~1996
218308037130984822310 ~1997
2183099634366199279 ~1996
2183127714366255439 ~1996
218317951218317951110 ~1998
2183230194366460399 ~1996
218331917130999150310 ~1997
218334943218334943110 ~1998
2183362434366724879 ~1996
2183397834366795679 ~1996
2183403834366807679 ~1996
218341817305678543910 ~1998
218346407393023532710 ~1998
2183487234366974479 ~1996
2183501034367002079 ~1996
2183542434367084879 ~1996
2183591034367182079 ~1996
2183599194367198399 ~1996
218363177174690541710 ~1998
2183632794367265599 ~1996
218364697131018818310 ~1997
2183747634367495279 ~1996
2183755194367510399 ~1996
Exponent Prime Factor Digits Year
2183772594367545199 ~1996
2183784834367569679 ~1996
218385407174708325710 ~1998
218386061174708848910 ~1998
218389811174711848910 ~1998
218391071174712856910 ~1998
218391821131035092710 ~1997
2183922834367845679 ~1996
2184018114368036239 ~1996
2184023634368047279 ~1996
2184034914368069839 ~1996
2184061434368122879 ~1996
218407001174725600910 ~1998
218407447218407447110 ~1998
218412473131047483910 ~1997
218412767567873194310 ~1999
2184143034368286079 ~1996
2184246834368493679 ~1996
2184318834368637679 ~1996
2184369234368738479 ~1996
218450081830110307910 ~1999
2184539514369079039 ~1996
2184571194369142399 ~1996
218458423349533476910 ~1998
218461007393229812710 ~1998
Exponent Prime Factor Digits Year
2184630714369261439 ~1996
2184633834369267679 ~1996
2184672114369344239 ~1996
2184698514369397039 ~1996
2184715314369430639 ~1996
2184778794369557599 ~1996
218483533131090119910 ~1997
2184894611704217795911 ~2000
2184953634369907279 ~1996
218495401131097240710 ~1997
2184982371879084838311 ~2000
2185048314370096639 ~1996
218508457131105074310 ~1997
2185226514370453039 ~1996
21853021731992823768912 ~2003
2185310634370621279 ~1996
218544691393380443910 ~1998
2185609314371218639 ~1996
2185612434371224879 ~1996
2185763394371526799 ~1996
2185799514371599039 ~1996
218583301131149980710 ~1997
218594153306031814310 ~1998
2185980714371961439 ~1996
2185995714371991439 ~1996
Home
5.187.277 digits
e-mail
25-11-17