Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3006285716012571439 ~1997
300646007240516805710 ~1999
3006522116013044239 ~1997
3006603236013206479 ~1997
3006652032164789461711 ~2001
3006742196013484399 ~1997
3006824636013649279 ~1997
3006904796013809599 ~1997
3006911516013823039 ~1997
3006918236013836479 ~1997
3007082516014165039 ~1997
300732787721758688910 ~2000
3007437596014875199 ~1997
3007496996014993999 ~1997
3007526036015052079 ~1997
3007533116015066239 ~1997
3007593116015186239 ~1997
300759653180455791910 ~1998
300760697180456418310 ~1998
3007639436015278879 ~1997
3007676516015353039 ~1997
3007775636015551279 ~1997
3007796636015593279 ~1997
3007884011383626644711 ~2001
300790951300790951110 ~1999
Exponent Prime Factor Digits Year
3007949516015899039 ~1997
300794987782066966310 ~2000
3008004116016008239 ~1997
3008073596016147199 ~1997
3008157596016315199 ~1997
3008158436016316879 ~1997
300823951300823951110 ~1999
3008403116016806239 ~1997
3008559596017119199 ~1997
3008560436017120879 ~1997
3008569436017138879 ~1997
3008570996017141999 ~1997
3008724596017449199 ~1997
300882697180529618310 ~1998
3008859716017719439 ~1997
3008944916017889839 ~1997
300899047300899047110 ~1999
3009065636018131279 ~1997
3009091796018183599 ~1997
3009146996018293999 ~1997
3009303596018607199 ~1997
300939131240751304910 ~1999
300955381180573228710 ~1998
3009570716019141439 ~1997
3009695031264071912711 ~2000
Exponent Prime Factor Digits Year
300976253180585751910 ~1998
3009818396019636799 ~1997
3009820916019641839 ~1997
3009825671986484942311 ~2001
300982741180589644710 ~1998
300983797180590278310 ~1998
300985621180591372710 ~1998
3009923396019846799 ~1997
3010015316020030639 ~1997
301017653180610591910 ~1998
3010191236020382479 ~1997
3010269236020538479 ~1997
3010565516021131039 ~1997
3010600796021201599 ~1997
301061437481698299310 ~1999
3010753436021506879 ~1997
301081439240865151310 ~1999
3010858916021717839 ~1997
301099433180659659910 ~1998
301106671481770673710 ~1999
3011239196022478399 ~1997
301126829240901463310 ~1999
3011348036022696079 ~1997
3011374916022749839 ~1997
3011421116022842239 ~1997
Exponent Prime Factor Digits Year
3011506692650125887311 ~2001
3011551316023102639 ~1997
3011578916023157839 ~1997
3011580236023160479 ~1997
3011641196023282399 ~1997
301175507240940405710 ~1999
3011763836023527679 ~1997
3011818196023636399 ~1997
301185673180711403910 ~1998
3011870396023740799 ~1997
301193393180716035910 ~1998
3011998916023997839 ~1997
3012060236024120479 ~1997
3012181196024362399 ~1997
3012494516024989039 ~1997
3012549116025098239 ~1997
3012645596025291199 ~1997
3012652916025305839 ~1997
301271381180762828710 ~1998
3012733215061391792911 ~2002
3012804716025609439 ~1997
301285637180771382310 ~1998
3012916316025832639 ~1997
301293521180776112710 ~1998
301294541241035632910 ~1999
Home
4.724.182 digits
e-mail
25-04-13