Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
299920099299920099110 ~1999
2999237515998475039 ~1997
2999251795998503599 ~1997
2999326315998652639 ~1997
2999337595998675199 ~1997
299934653179960791910 ~1998
299939791539891623910 ~2000
2999535235999070479 ~1997
2999555635999111279 ~1997
299956231299956231110 ~1999
2999635195999270399 ~1997
2999699635999399279 ~1997
2999715471499857735111 ~2001
2999827795999655599 ~1997
2999853595999707199 ~1997
299995723299995723110 ~1999
2999987395999974799 ~1997
300001181240000944910 ~1999
3000013196000026399 ~1997
3000118196000236399 ~1997
300021881180013128710 ~1998
3000317996000635999 ~1997
30003823913501720755112 ~2003
3000563636001127279 ~1997
3000652196001304399 ~1997
Exponent Prime Factor Digits Year
3000785636001571279 ~1997
300078901180047340710 ~1998
3000816191440391771311 ~2001
3000836396001672799 ~1997
3000864116001728239 ~1997
3000898796001797599 ~1997
3001087796002175599 ~1997
300121421240097136910 ~1999
3001543316003086639 ~1997
3001849316003698639 ~1997
3001859996003719999 ~1997
3001877036003754079 ~1997
3001929236003858479 ~1997
3001964711260825178311 ~2000
300200737180120442310 ~1998
300201481180120888710 ~1998
3002093533362344753711 ~2001
300228961180137376710 ~1998
300232453180139471910 ~1998
3002395916004791839 ~1997
3002416316004832639 ~1997
300246337180147802310 ~1998
300270673180162403910 ~1998
3002738996005477999 ~1997
3002835236005670479 ~1997
Exponent Prime Factor Digits Year
300283817240227053710 ~1999
3002843996005687999 ~1997
3002967236005934479 ~1997
3003015596006031199 ~1997
3003210533123338951311 ~2001
3003312596006625199 ~1997
3003328916006657839 ~1997
300339511300339511110 ~1999
3003605516007211039 ~1997
300381691300381691110 ~1999
3003821516007643039 ~1997
3003823316007646639 ~1997
3003904796007809599 ~1997
300396793180238075910 ~1998
3003985196007970399 ~1997
3004006436008012879 ~1997
300402853180241711910 ~1998
3004095236008190479 ~1997
300412501180247500710 ~1998
3004193636008387279 ~1997
300424721180254832710 ~1998
30042677926737983331112 ~2004
300429223300429223110 ~1999
3004311711502155855111 ~2001
3004347236008694479 ~1997
Exponent Prime Factor Digits Year
300440599300440599110 ~1999
3004425291862743679911 ~2001
3004566836009133679 ~1997
3004819911682699149711 ~2001
300482921240386336910 ~1999
300485477240388381710 ~1999
3005021516010043039 ~1997
300504613180302767910 ~1998
300507587240406069710 ~1999
300511903300511903110 ~1999
3005174636010349279 ~1997
3005244596010489199 ~1997
3005267036010534079 ~1997
3005272331382425271911 ~2001
300541781240433424910 ~1999
300542899300542899110 ~1999
300547523721314055310 ~2000
300552997180331798310 ~1998
3005699036011398079 ~1997
300581371541046467910 ~2000
30058735131020614623312 ~2004
3005992916011985839 ~1997
300612341240489872910 ~1999
3006183716012367439 ~1997
3006211796012423599 ~1997
Home
4.724.182 digits
e-mail
25-04-13