Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
267225421427560673710 ~1999
267249511427599217710 ~1999
267252809213802247310 ~1998
267264689374170564710 ~1999
2672663995345327999 ~1997
2672736835345473679 ~1997
267275069374185096710 ~1999
2672795995345591999 ~1997
2672888395345776799 ~1997
2673075115346150239 ~1997
267314893160388935910 ~1998
267327817427724507310 ~1999
2673284035346568079 ~1997
2673294235346588479 ~1997
267331741588129830310 ~1999
2673342715346685439 ~1997
2673345595346691199 ~1997
2673360715346721439 ~1997
2673419395346838799 ~1997
2673536995347073999 ~1997
2673553915347107839 ~1997
2673567115347134239 ~1997
267368531213894824910 ~1998
2673701995347403999 ~1997
2673766195347532399 ~1997
Exponent Prime Factor Digits Year
267377801213902240910 ~1998
2673993235347986479 ~1997
267409531267409531110 ~1999
2674095595348191199 ~1997
2674163395348326799 ~1997
2674277035348554079 ~1997
2674318915348637839 ~1997
2674337035348674079 ~1997
2674369315348738639 ~1997
2674377193209252628111 ~2001
2674388635348777279 ~1997
2674407595348815199 ~1997
2674441795348883599 ~1997
2674473715348947439 ~1997
267451553374432174310 ~1999
2674621315349242639 ~1997
267464521160478712710 ~1998
2674680595349361199 ~1997
2674715515349431039 ~1997
2674740235349480479 ~1997
2674829035349658079 ~1997
2674843915349687839 ~1997
267487151213989720910 ~1998
2674878595349757199 ~1997
267494837213995869710 ~1998
Exponent Prime Factor Digits Year
267499391213999512910 ~1998
267505759267505759110 ~1999
267518021214014416910 ~1998
2675227435350454879 ~1997
2675258515350517039 ~1997
267530321160518192710 ~1998
2675332195350664399 ~1997
2675396635350793279 ~1997
2675443992354390711311 ~2001
2675653795351307599 ~1997
2675689435351378879 ~1997
2675699995351399999 ~1997
2675728915351457839 ~1997
267573107481631592710 ~1999
2675782435351564879 ~1997
2675810635351621279 ~1997
267584287642202288910 ~1999
267584621214067696910 ~1998
2675927395351854799 ~1997
267599609214079687310 ~1998
267601157642242776910 ~1999
267602417160561450310 ~1998
2676213115352426239 ~1997
2676237715352475439 ~1997
2676290395352580799 ~1997
Exponent Prime Factor Digits Year
2676508795353017599 ~1997
2676635515353271039 ~1997
267667019481800634310 ~1999
267668237160600942310 ~1998
2676687595353375199 ~1997
2676726835353453679 ~1997
267675337160605202310 ~1998
2676761635353523279 ~1997
2676808372087910528711 ~2001
2676889013426417932911 ~2001
2676977995353955999 ~1997
2677147435354294879 ~1997
2677184035354368079 ~1997
2677220995354441999 ~1997
267731627481916928710 ~1999
267750811267750811110 ~1999
267757159267757159110 ~1999
267765587214212469710 ~1998
267767671267767671110 ~1999
2677682395355364799 ~1997
2677685635355371279 ~1997
2677828315355656639 ~1997
267786989214229591310 ~1998
2677954315355908639 ~1997
267808141160684884710 ~1998
Home
4.724.182 digits
e-mail
25-04-13