Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
289574167289574167110 ~1999
2895755635791511279 ~1997
2895785995791571999 ~1997
2895891235791782479 ~1997
2895899035791798079 ~1997
289591433173754859910 ~1998
2895983635791967279 ~1997
2896036795792073599 ~1997
2896132511911447456711 ~2001
2896314835792629679 ~1997
2896385995792771999 ~1997
2896397395792794799 ~1997
289642421173785452710 ~1998
2896457035792914079 ~1997
2896525435793050879 ~1997
2896533235793066479 ~1997
2896559035793118079 ~1997
2896561315793122639 ~1997
2896606915793213839 ~1997
2896685515793371039 ~1997
2896759435793518879 ~1997
2896853035793706079 ~1997
2897000035794000079 ~1997
289729859695351661710 ~2000
289747181231797744910 ~1999
Exponent Prime Factor Digits Year
289753481231802784910 ~1999
289753483985161842310 ~2000
2897535115795070239 ~1997
2897549635795099279 ~1997
289760657173856394310 ~1998
2897614435795228879 ~1997
2897737795795475599 ~1997
2897740915795481839 ~1997
2897764915795529839 ~1997
2897846395795692799 ~1997
2897946115795892239 ~1997
2897955595795911199 ~1997
289817987521672376710 ~1999
2898243715796487439 ~1997
289827613463724180910 ~1999
2898306833014239103311 ~2001
289835921231868736910 ~1999
2898427795796855599 ~1997
2898483715796967439 ~1997
289849481869548443110 ~2000
289851827695644384910 ~2000
2898584035797168079 ~1997
289859399231887519310 ~1999
2898610315797220639 ~1997
2898763435797526879 ~1997
Exponent Prime Factor Digits Year
2898769498348456131311 ~2002
2898824515797649039 ~1997
289885517231908413710 ~1999
2898885835797771679 ~1997
289890959231912767310 ~1999
2899031515798063039 ~1997
289903681637788098310 ~2000
289908343463853348910 ~1999
289929499521873098310 ~1999
2899402915798805839 ~1997
289943749869831247110 ~2000
289965197231972157710 ~1999
2899676035799352079 ~1997
289971637173982982310 ~1998
2899726915799453839 ~1997
289975547695941312910 ~2000
2899878715799757439 ~1997
289988651231990920910 ~1999
2899940635799881279 ~1997
290000057174000034310 ~1998
2900010595800021199 ~1997
290005811928018595310 ~2000
290021737174013042310 ~1998
290029111464046577710 ~1999
2900308315800616639 ~1997
Exponent Prime Factor Digits Year
290042843928137097710 ~2000
290047987464076779310 ~1999
290062273174037363910 ~1998
290062967232050373710 ~1999
290076013174045607910 ~1998
290076953406107734310 ~1999
2900810035801620079 ~1997
2900858995801717999 ~1997
290107177174064306310 ~1998
2901178195802356399 ~1997
290122453174073471910 ~1998
290138897174083338310 ~1998
290143697174086218310 ~1998
2901465835802931679 ~1997
2901473395802946799 ~1997
2901531835803063679 ~1997
2901646435803292879 ~1997
2901664971102632688711 ~2000
2901722515803445039 ~1997
2901760871392845217711 ~2000
290181949696436677710 ~2000
2901980635803961279 ~1997
290211241174126744710 ~1998
2902116115804232239 ~1997
2902153795804307599 ~1997
Home
4.724.182 digits
e-mail
25-04-13