Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2582960395165920799 ~1997
258301709206641367310 ~1998
258306431671596720710 ~1999
2583180595166361199 ~1997
258330277154998166310 ~1998
2583385435166770879 ~1997
2583394435166788879 ~1997
2583398635166797279 ~1997
2583421315166842639 ~1997
2583477835166955679 ~1997
2583554635167109279 ~1997
258364153155018491910 ~1998
2583659035167318079 ~1997
2583684715167369439 ~1997
258370901206696720910 ~1998
2583720835167441679 ~1997
258375479620101149710 ~1999
258377221155026332710 ~1998
2583820795167641599 ~1997
2583861715167723439 ~1997
2583914395167828799 ~1997
2583949195167898399 ~1997
2583951715167903439 ~1997
258396707206717365710 ~1998
258397889206718311310 ~1998
Exponent Prime Factor Digits Year
258404477206723581710 ~1998
258406829206725463310 ~1998
2584082395168164799 ~1997
258410093155046055910 ~1998
258411073155046643910 ~1998
2584116835168233679 ~1997
258417749206734199310 ~1998
258422513155053507910 ~1998
2584229035168458079 ~1997
2584249315168498639 ~1997
2584301035168602079 ~1997
2584443115168886239 ~1997
2584525915169051839 ~1997
2584536835169073679 ~1997
258455909206764727310 ~1998
2584623595169247199 ~1997
2584630435169260879 ~1997
2584780795169561599 ~1997
2584787515169575039 ~1997
2584867795169735599 ~1997
2585122795170245599 ~1997
2585125195170250399 ~1997
2585153995170307999 ~1997
2585250235170500479 ~1997
2585251195170502399 ~1997
Exponent Prime Factor Digits Year
258525763620461831310 ~1999
258526109206820887310 ~1998
2585266435170532879 ~1997
258534253155120551910 ~1998
2585483573257709298311 ~2001
2585531995171063999 ~1997
2585681515171363039 ~1997
2585691595171383199 ~1997
2585793115171586239 ~1997
258584057155150434310 ~1998
258589129620613909710 ~1999
2585894035171788079 ~1997
258594277155156566310 ~1998
258599017155159410310 ~1998
2586022195172044399 ~1997
258612131206889704910 ~1998
2586237595172475199 ~1997
2586311515172623039 ~1997
258636809362091532710 ~1999
258657067258657067110 ~1998
2586591835173183679 ~1997
2586687595173375199 ~1997
2586711835173423679 ~1997
2586736315173472639 ~1997
258676931206941544910 ~1998
Exponent Prime Factor Digits Year
2586886795173773599 ~1997
2586908635173817279 ~1997
258690917206952733710 ~1998
258691493362168090310 ~1999
258706061206964848910 ~1998
2587071595174143199 ~1997
2587076395174152799 ~1997
2587139635174279279 ~1997
258717973155230783910 ~1998
2587196035174392079 ~1997
258723811258723811110 ~1998
2587264915174529839 ~1997
258728441155237064710 ~1998
2587290835174581679 ~1997
2587346995174693999 ~1997
2587398235174796479 ~1997
2587504915175009839 ~1997
2587505395175010799 ~1997
2587519915175039839 ~1997
2587576435175152879 ~1997
2587640035175280079 ~1997
258773231207018584910 ~1998
258785537155271322310 ~1998
2587858435175716879 ~1997
2587878715175757439 ~1997
Home
4.724.182 digits
e-mail
25-04-13