Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2902171315804342639 ~1997
290226641174135984710 ~1998
2902318915804637839 ~1997
290232797406325915910 ~1999
290233663290233663110 ~1999
290234513174140707910 ~1998
2902405795804811599 ~1997
290243299290243299110 ~1999
2902597435805194879 ~1997
2902649515805299039 ~1997
290273881174164328710 ~1998
2902795795805591599 ~1997
290280827232224661710 ~1999
290285833174171499910 ~1998
2902886395805772799 ~1997
2902894795805789599 ~1997
2902908595805817199 ~1997
290293727232234981710 ~1999
2903109412961171598311 ~2001
290317751232254200910 ~1999
2903210395806420799 ~1997
2903220232612898207111 ~2001
2903276995806553999 ~1997
290328509232262807310 ~1999
2903316835806633679 ~1997
Exponent Prime Factor Digits Year
290345981174207588710 ~1998
2903558395807116799 ~1997
290365093174219055910 ~1998
290369819232295855310 ~1999
2903719976504332732911 ~2002
290377097174226258310 ~1998
2903782795807565599 ~1997
290378797174227278310 ~1998
290387717174232630310 ~1998
2904029395808058799 ~1997
2904030235808060479 ~1997
2904076195808152399 ~1997
2904149635808299279 ~1997
290428511232342808910 ~1999
290439797232351837710 ~1999
290449961232359968910 ~1999
2904512515809025039 ~1997
290453659522816586310 ~1999
2904567235809134479 ~1997
2904570715809141439 ~1997
2904638635809277279 ~1997
2904656631917073375911 ~2001
2904888235809776479 ~1997
2905055995810111999 ~1997
2905240435810480879 ~1997
Exponent Prime Factor Digits Year
2905263771104000232711 ~2000
2905339795810679599 ~1997
2905344835810689679 ~1997
290534591232427672910 ~1999
2905376995810753999 ~1997
2905382035810764079 ~1997
2905402795810805599 ~1997
2905416595810833199 ~1997
290547311232437848910 ~1999
2905558795811117599 ~1997
2905608115811216239 ~1997
2905673635811347279 ~1997
290587993174352795910 ~1998
2905926715811853439 ~1997
290593319232474655310 ~1999
290600327232480261710 ~1999
290603783697449079310 ~2000
2906055715812111439 ~1997
2906072035812144079 ~1997
290621083464993732910 ~1999
2906217115812434239 ~1997
2906295235812590479 ~1997
290643653174386191910 ~1998
2906466791162586716111 ~2000
290655887523180596710 ~1999
Exponent Prime Factor Digits Year
290663987232531189710 ~1999
290665321174399192710 ~1998
2906660395813320799 ~1997
2906669635813339279 ~1997
290671037406939451910 ~1999
2906736115813472239 ~1997
290679797174407878310 ~1998
2906864995813729999 ~1997
290698649406978108710 ~1999
2907062635814125279 ~1997
2907195715814391439 ~1997
290734117174440470310 ~1998
2907429835814859679 ~1997
290745673465193076910 ~1999
2907525235815050479 ~1997
2907647515815295039 ~1997
2907661915815323839 ~1997
2907683635815367279 ~1997
2907718435815436879 ~1997
2907746395815492799 ~1997
2907777715815555439 ~1997
2907780115815560239 ~1997
2907837115815674239 ~1997
2907948595815897199 ~1997
290800949232640759310 ~1999
Home
4.724.182 digits
e-mail
25-04-13