Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
266129783691937435910 ~2000
2661336115322672239 ~1997
2661362035322724079 ~1997
2661378715322757439 ~1997
2661585674098841931911 ~2001
2661628435323256879 ~1997
2661663595323327199 ~1997
2661715195323430399 ~1997
2661732835323465679 ~1997
2661872035323744079 ~1997
2661979795323959599 ~1997
2662036435324072879 ~1997
2662141915324283839 ~1997
266228663638948791310 ~1999
2662330435324660879 ~1997
2662357795324715599 ~1997
2662378795324757599 ~1997
266238293159742975910 ~1998
2662563595325127199 ~1997
266271197213016957710 ~1998
266274079266274079110 ~1999
2662769932769280727311 ~2001
2662827715325655439 ~1997
2662850395325700799 ~1997
2662871395325742799 ~1997
Exponent Prime Factor Digits Year
2662925571278204273711 ~2000
2662974115325948239 ~1997
2662977715325955439 ~1997
2663119315326238639 ~1997
2663194915326389839 ~1997
2663200315326400639 ~1997
2663242431970799398311 ~2001
2663247595326495199 ~1997
266326339266326339110 ~1999
2663289115326578239 ~1997
2663439115326878239 ~1997
266349583266349583110 ~1999
266353651266353651110 ~1999
2663643595327287199 ~1997
266366021799098063110 ~2000
266386693159832015910 ~1998
266390717799172151110 ~2000
266397941159838764710 ~1998
2664004435328008879 ~1997
266404231426246769710 ~1999
266407811213126248910 ~1998
2664212471545243232711 ~2000
2664251995328503999 ~1997
2664290995328581999 ~1997
2664295195328590399 ~1997
Exponent Prime Factor Digits Year
266429623266429623110 ~1999
266452057159871234310 ~1998
2664526915329053839 ~1997
266453567213162853710 ~1998
2664571795329143599 ~1997
266463721159878232710 ~1998
2664637795329275599 ~1997
266488757213191005710 ~1998
2664924835329849679 ~1997
2664932635329865279 ~1997
2665053835330107679 ~1997
2665280515330561039 ~1997
2665286515330573039 ~1997
2665305715330611439 ~1997
2665311235330622479 ~1997
2665345315330690639 ~1997
2665383235330766479 ~1997
266539081159923448710 ~1998
2665493995330987999 ~1997
2665502995331005999 ~1997
2665529995331059999 ~1997
2665551715331103439 ~1997
2665560715331121439 ~1997
2665617911066247164111 ~2000
2665830715331661439 ~1997
Exponent Prime Factor Digits Year
2665864315331728639 ~1997
266587907213270325710 ~1998
266588939213271151310 ~1998
2665901395331802799 ~1997
2665960195331920399 ~1997
2666187115332374239 ~1997
2666324515332649039 ~1997
2666366515332733039 ~1997
2666392915332785839 ~1997
2666437435332874879 ~1997
2666502835333005679 ~1997
2666526715333053439 ~1997
266655797159993478310 ~1998
2666637115333274239 ~1997
2666637835333275679 ~1997
2666704211866692947111 ~2001
266679317160007590310 ~1998
2666826595333653199 ~1997
2666909395333818799 ~1997
2666967235333934479 ~1997
2667022315334044639 ~1997
2667169915334339839 ~1997
266719553160031731910 ~1998
2667201835334403679 ~1997
2667218035334436079 ~1997
Home
4.768.925 digits
e-mail
25-05-04