Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2785227711336909300911 ~2000
2785395595570791199 ~1997
278542559222834047310 ~1998
2785442635570885279 ~1997
2785517395571034799 ~1997
278557243947094626310 ~2000
278558201222846560910 ~1998
2785619995571239999 ~1997
2785652395571304799 ~1997
2785710115571420239 ~1997
278573389668576133710 ~2000
278580259947172880710 ~2000
2785890715571781439 ~1997
2785913635571827279 ~1997
278593589222874871310 ~1998
2786009515572019039 ~1997
2786227315572454639 ~1997
2786244595572489199 ~1997
2786265115572530239 ~1997
2786270035572540079 ~1997
278634137222907309710 ~1998
2786400235572800479 ~1997
2786439715572879439 ~1997
2786544595573089199 ~1997
2786556235573112479 ~1997
Exponent Prime Factor Digits Year
2786593611560492421711 ~2000
2786606395573212799 ~1997
2786801515573603039 ~1997
278685677167211406310 ~1998
2786983795573967599 ~1997
2787050395574100799 ~1997
2787153835574307679 ~1997
278716261167229756710 ~1998
2787163315574326639 ~1997
278718607278718607110 ~1999
2787236035574472079 ~1997
2787428515574857039 ~1997
2787460435574920879 ~1997
2787470995574941999 ~1997
2787500995575001999 ~1997
2787532915575065839 ~1997
278754137167252482310 ~1998
2787651115575302239 ~1997
2787700315575400639 ~1997
2787757195575514399 ~1997
2787772315575544639 ~1997
2787780115575560239 ~1997
2787824995575649999 ~1997
2787831595575663199 ~1997
2787838315575676639 ~1997
Exponent Prime Factor Digits Year
2787849595575699199 ~1997
278787137167272282310 ~1998
2787916315575832639 ~1997
2787951235575902479 ~1997
2788035235576070479 ~1997
2788046995576093999 ~1997
2788085035576170079 ~1997
278812837167287702310 ~1998
2788263715576527439 ~1997
2788383835576767679 ~1997
2788423915576847839 ~1997
2788548835577097679 ~1997
2788577635577155279 ~1997
2788610035577220079 ~1997
278862239669269373710 ~2000
2788695115577390239 ~1997
278870077167322046310 ~1998
2788859035577718079 ~1997
2788949635577899279 ~1997
278912399223129919310 ~1998
2789440795578881599 ~1997
2789467435578934879 ~1997
2789497074742145019111 ~2002
2789581315579162639 ~1997
278961413167376847910 ~1998
Exponent Prime Factor Digits Year
2789676595579353199 ~1997
278970257390558359910 ~1999
278971543446354468910 ~1999
2789723995579447999 ~1997
2789895235579790479 ~1997
2789924635579849279 ~1997
2790019915580039839 ~1997
2790184315580368639 ~1997
279021271446434033710 ~1999
2790233995580467999 ~1997
2790278035580556079 ~1997
2790477595580955199 ~1997
279048169669715605710 ~2000
2790563395581126799 ~1997
2790662395581324799 ~1997
279077521167446512710 ~1998
2790817915581635839 ~1997
2790820915581641839 ~1997
2790919795581839599 ~1997
2790969595581939199 ~1997
2790998395581996799 ~1997
2791005115582010239 ~1997
279101723669844135310 ~2000
2791037635582075279 ~1997
2791071231172249916711 ~2000
Home
4.724.182 digits
e-mail
25-04-13