Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2667223315334446639 ~1997
2667248635334497279 ~1997
2667253315334506639 ~1997
2667326635334653279 ~1997
266744393160046635910 ~1998
266760407213408325710 ~1998
2667686995335373999 ~1997
2667789595335579199 ~1997
266789401160073640710 ~1998
2667901195335802399 ~1997
2667917995335835999 ~1997
2667954715335909439 ~1997
266799959480239926310 ~1999
2668094635336189279 ~1997
2668101115336202239 ~1997
2668159315336318639 ~1997
266816873373543622310 ~1999
2668280995336561999 ~1997
2668308595336617199 ~1997
266834591693769936710 ~2000
2668375315336750639 ~1997
266837999213470399310 ~1998
2668482715336965439 ~1997
2668589395337178799 ~1997
266859787266859787110 ~1999
Exponent Prime Factor Digits Year
2668843915337687839 ~1997
2668956835337913679 ~1997
2668976395337952799 ~1997
2669010235338020479 ~1997
2669029435338058879 ~1997
2669104435338208879 ~1997
2669128795338257599 ~1997
2669151715338303439 ~1997
266917199213533759310 ~1998
266919557160151734310 ~1998
2669202715338405439 ~1997
2669215795338431599 ~1997
2669241115338482239 ~1997
2669268115338536239 ~1997
2669369035338738079 ~1997
2669394115338788239 ~1997
266946397160167838310 ~1998
2669469235338938479 ~1997
2669487235338974479 ~1997
266949737213559789710 ~1998
2669510995339021999 ~1997
266955617213564493710 ~1998
266958689213566951310 ~1998
2669591635339183279 ~1997
266969617160181770310 ~1998
Exponent Prime Factor Digits Year
2669707792402737011111 ~2001
267013709213610967310 ~1998
2670221395340442799 ~1997
2670389035340778079 ~1997
267042709587493959910 ~1999
267043433160226059910 ~1998
2670436915340873839 ~1997
2670491035340982079 ~1997
2670520811922774983311 ~2001
2670565795341131599 ~1997
2670585235341170479 ~1997
2670598435341196879 ~1997
2670952435341904879 ~1997
2671016515342033039 ~1997
267104857160262914310 ~1998
2671153795342307599 ~1997
2671206115342412239 ~1997
2671360915342721839 ~1997
2671486435342972879 ~1997
2671537915343075839 ~1997
2671547471068618988111 ~2000
267158581160295148710 ~1998
267160147480888264710 ~1999
267160447267160447110 ~1999
267170863641210071310 ~1999
Exponent Prime Factor Digits Year
267172379213737903310 ~1998
2671743115343486239 ~1997
2671835035343670079 ~1997
267186767213749413710 ~1998
267187441160312464710 ~1998
2671958395343916799 ~1997
2672032435344064879 ~1997
2672045995344091999 ~1997
2672098435344196879 ~1997
2672139235344278479 ~1997
2672155195344310399 ~1997
2672161435344322879 ~1997
2672239195344478399 ~1997
267225421427560673710 ~1999
267249511427599217710 ~1999
267252809213802247310 ~1998
267264689374170564710 ~1999
2672663995345327999 ~1997
2672736835345473679 ~1997
267275069374185096710 ~1999
2672795995345591999 ~1997
2672888395345776799 ~1997
2673075115346150239 ~1997
267314893160388935910 ~1998
267327817427724507310 ~1999
Home
4.768.925 digits
e-mail
25-05-04