Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
259941853623860447310 ~1999
2599463635198927279 ~1997
259950731207960584910 ~1998
2599527115199054239 ~1997
2599543795199087599 ~1997
2599566595199133199 ~1997
2599585195199170399 ~1997
2599606915199213839 ~1997
2599676515199353039 ~1997
2599740595199481199 ~1997
2599745515199491039 ~1997
259994201155996520710 ~1998
260002937156001762310 ~1998
260008769364012276710 ~1999
2600116795200233599 ~1997
2600127715200255439 ~1997
2600194915200389839 ~1997
2600234995200469999 ~1997
2600273635200547279 ~1997
2600291635200583279 ~1997
2600309515200619039 ~1997
2600331595200663199 ~1997
2600376235200752479 ~1997
2600397115200794239 ~1997
260044277208035421710 ~1998
Exponent Prime Factor Digits Year
2600497195200994399 ~1997
2600497915200995839 ~1997
2600529595201059199 ~1997
260055491208044392910 ~1998
260067373156040423910 ~1998
2600674435201348879 ~1997
2600736595201473199 ~1997
2600754115201508239 ~1997
260079397156047638310 ~1998
2600810995201621999 ~1997
2600865115201730239 ~1997
260094799260094799110 ~1998
2601274435202548879 ~1997
260131493156078895910 ~1998
260140757156084454310 ~1998
260147309832471388910 ~2000
260154211416246737710 ~1999
2601634435203268879 ~1997
260164049208131239310 ~1998
2601665515203331039 ~1997
260171507208137205710 ~1998
2601789115203578239 ~1997
2601792595203585199 ~1997
2601868915203737839 ~1997
2601878995203757999 ~1997
Exponent Prime Factor Digits Year
2602088635204177279 ~1997
260210273364294382310 ~1999
260213957156128374310 ~1998
260216129624518709710 ~1999
2602179491249046155311 ~2000
2602226395204452799 ~1997
2602284715204569439 ~1997
260232223260232223110 ~1998
2602331995204663999 ~1997
2602334395204668799 ~1997
260243213156145927910 ~1998
260245291260245291110 ~1998
260245849572540867910 ~1999
260250811468451459910 ~1999
260251661156150996710 ~1998
2602667035205334079 ~1997
260266837156160102310 ~1998
260267407624641776910 ~1999
2602763395205526799 ~1997
260280199260280199110 ~1998
260298901572657582310 ~1999
2603146611874265559311 ~2001
2603412235206824479 ~1997
2603470195206940399 ~1997
2603539915207079839 ~1997
Exponent Prime Factor Digits Year
2603549995207099999 ~1997
260363021208290416910 ~1998
2603746195207492399 ~1997
260377681156226608710 ~1998
260392409364549372710 ~1999
260392661208314128910 ~1998
260394521208315616910 ~1998
2604000835208001679 ~1997
2604183115208366239 ~1997
2604191995208383999 ~1997
260426909364597672710 ~1999
2604409915208819839 ~1997
2604456115208912239 ~1997
2604493795208987599 ~1997
260453153156271891910 ~1998
2604562195209124399 ~1997
2604564115209128239 ~1997
2604661195209322399 ~1997
2604696235209392479 ~1997
260475421156285252710 ~1998
260485807416777291310 ~1999
260490029364686040710 ~1999
260495987677289566310 ~1999
260506817156304090310 ~1998
2605204795210409599 ~1997
Home
4.768.925 digits
e-mail
25-05-04