Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2583914395167828799 ~1997
2583949195167898399 ~1997
2583951715167903439 ~1997
258396707206717365710 ~1998
258397889206718311310 ~1998
258404477206723581710 ~1998
258406829206725463310 ~1998
2584082395168164799 ~1997
258410093155046055910 ~1998
258411073155046643910 ~1998
2584116835168233679 ~1997
258417749206734199310 ~1998
258422513155053507910 ~1998
2584229035168458079 ~1997
2584249315168498639 ~1997
2584301035168602079 ~1997
2584443115168886239 ~1997
2584525915169051839 ~1997
2584536835169073679 ~1997
258455909206764727310 ~1998
2584623595169247199 ~1997
2584630435169260879 ~1997
2584780795169561599 ~1997
2584787515169575039 ~1997
2584867795169735599 ~1997
Exponent Prime Factor Digits Year
2584945315169890639 ~1997
2585122795170245599 ~1997
2585125195170250399 ~1997
2585153995170307999 ~1997
2585250235170500479 ~1997
2585251195170502399 ~1997
258525763620461831310 ~1999
258526109206820887310 ~1998
2585266435170532879 ~1997
258534253155120551910 ~1998
2585483573257709298311 ~2001
2585531995171063999 ~1997
2585681515171363039 ~1997
2585691595171383199 ~1997
2585793115171586239 ~1997
258584057155150434310 ~1998
258589129620613909710 ~1999
2585894035171788079 ~1997
258594277155156566310 ~1998
258599017155159410310 ~1998
2586022195172044399 ~1997
258612131206889704910 ~1998
2586237595172475199 ~1997
2586311515172623039 ~1997
258636809362091532710 ~1999
Exponent Prime Factor Digits Year
258657067258657067110 ~1998
2586591835173183679 ~1997
2586687595173375199 ~1997
2586711835173423679 ~1997
2586736315173472639 ~1997
258676931206941544910 ~1998
2586886795173773599 ~1997
2586908635173817279 ~1997
258690917206952733710 ~1998
258691493362168090310 ~1999
258706061206964848910 ~1998
2587071595174143199 ~1997
2587076395174152799 ~1997
2587139635174279279 ~1997
258717973155230783910 ~1998
2587196035174392079 ~1997
258723811258723811110 ~1998
2587264915174529839 ~1997
258728441155237064710 ~1998
2587290835174581679 ~1997
2587346995174693999 ~1997
2587398235174796479 ~1997
2587504915175009839 ~1997
2587505395175010799 ~1997
2587519915175039839 ~1997
Exponent Prime Factor Digits Year
2587576435175152879 ~1997
2587640035175280079 ~1997
258773231207018584910 ~1998
258785537155271322310 ~1998
2587858435175716879 ~1997
2587878715175757439 ~1997
2587914715175829439 ~1997
2587992595175985199 ~1997
2588012395176024799 ~1997
2588139595176279199 ~1997
258818587465873456710 ~1999
2588209315176418639 ~1997
2588223835176447679 ~1997
258823787207059029710 ~1998
258823813155294287910 ~1998
2588316595176633199 ~1997
2588587091656695737711 ~2000
258863291207090632910 ~1998
258863401155318040710 ~1998
258866921207093536910 ~1998
2588685235177370479 ~1997
2588729635177459279 ~1997
258876613155325967910 ~1998
2588780515177561039 ~1997
258879979258879979110 ~1998
Home
4.768.925 digits
e-mail
25-05-04