Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2541873595083747199 ~1997
2541886915083773839 ~1997
2541917995083835999 ~1997
2541997673050397204111 ~2001
2542023235084046479 ~1997
2542039315084078639 ~1997
2542069911220193556911 ~2000
2542100035084200079 ~1997
254222797152533678310 ~1998
2542263595084527199 ~1997
2542326235084652479 ~1997
2542342195084684399 ~1997
254234297203387437710 ~1998
254236447864403919910 ~2000
254239639254239639110 ~1998
2542590595085181199 ~1997
2542726435085452879 ~1997
2542761115085522239 ~1997
254277973610267135310 ~1999
254301191203440952910 ~1998
2543014795086029599 ~1997
2543051515086103039 ~1997
2543056315086112639 ~1997
2543064715086129439 ~1997
2543077315086154639 ~1997
Exponent Prime Factor Digits Year
2543116795086233599 ~1997
2543179915086359839 ~1997
254320471406912753710 ~1999
254336297152601778310 ~1998
254341187203472949710 ~1998
2543441515086883039 ~1997
2543449435086898879 ~1997
254345281559559618310 ~1999
2543456995086913999 ~1997
254349457152609674310 ~1998
2543499835086999679 ~1997
2543517115087034239 ~1997
254354173152612503910 ~1998
254361139254361139110 ~1998
254361319864828484710 ~2000
2543636995087273999 ~1997
254365337203492269710 ~1998
2543667715087335439 ~1997
2543708995087417999 ~1997
254371583813989065710 ~2000
2543719795087439599 ~1997
2543728795087457599 ~1997
2543759395087518799 ~1997
254382473152629483910 ~1998
2543873635087747279 ~1997
Exponent Prime Factor Digits Year
254396563407034500910 ~1999
2543965915087931839 ~1997
2543967115087934239 ~1997
2544009835088019679 ~1997
2544104515088209039 ~1997
2544160315088320639 ~1997
2544168192238868007311 ~2001
254420653152652391910 ~1998
2544223195088446399 ~1997
254427343407083748910 ~1999
2544287995088575999 ~1997
2544333235088666479 ~1997
2544380035088760079 ~1997
2544386511221305524911 ~2000
2544506395089012799 ~1997
2544506995089013999 ~1997
2544589034732935595911 ~2001
2544632395089264799 ~1997
254465647407145035310 ~1999
2544675235089350479 ~1997
2544804835089609679 ~1997
2544993595089987199 ~1997
254508257152704954310 ~1998
2545113115090226239 ~1997
2545113715090227439 ~1997
Exponent Prime Factor Digits Year
2545122835090245679 ~1997
2545149595090299199 ~1997
2545200235090400479 ~1997
2545248715090497439 ~1997
2545267435090534879 ~1997
2545301635090603279 ~1997
2545331995090663999 ~1997
2545373515090747039 ~1997
2545523515091047039 ~1997
254565797152739478310 ~1998
2545690195091380399 ~1997
2545762795091525599 ~1997
254582891203666312910 ~1998
254583961152750376710 ~1998
2545842595091685199 ~1997
2545909915091819839 ~1997
2545959835091919679 ~1997
2545998835091997679 ~1997
254600023407360036910 ~1999
2546031715092063439 ~1997
2546037115092074239 ~1997
2546176315092352639 ~1997
2546189395092378799 ~1997
2546369515092739039 ~1997
254664121152798472710 ~1998
Home
4.768.925 digits
e-mail
25-05-04