Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
253639349202911479310 ~1998
253639517202911613710 ~1998
253642421152185452710 ~1998
253646021152187612710 ~1998
2536658515073317039 ~1997
2536714435073428879 ~1997
2536725115073450239 ~1997
253672753152203651910 ~1998
253673267202938613710 ~1998
253675381405880609710 ~1999
253676321202941056910 ~1998
253680677152208406310 ~1998
2536815431065462480711 ~2000
2536819795073639599 ~1997
253685753152211451910 ~1998
253691617152214970310 ~1998
2537021395074042799 ~1997
2537255515074511039 ~1997
2537335915074671839 ~1997
253738819608973165710 ~1999
253753217355254503910 ~1999
2537634835075269679 ~1997
253765991203012792910 ~1998
253766069203012855310 ~1998
253769107253769107110 ~1998
Exponent Prime Factor Digits Year
2537717515075435039 ~1997
253776001152265600710 ~1998
2537910715075821439 ~1997
2537926315075852639 ~1997
2537928115075856239 ~1997
2537950795075901599 ~1997
253799167406078667310 ~1999
2538016435076032879 ~1997
2538111715076223439 ~1997
2538114835076229679 ~1997
2538153115076306239 ~1997
253816907203053525710 ~1998
253823113406116980910 ~1999
2538231595076463199 ~1997
253838089609211413710 ~1999
253849529609238869710 ~1999
2538771115077542239 ~1997
2538837115077674239 ~1997
2538845035077690079 ~1997
2538910195077820399 ~1997
253895513152337307910 ~1998
2538996715077993439 ~1997
253901017152340610310 ~1998
2539092235078184479 ~1997
2539112995078225999 ~1997
Exponent Prime Factor Digits Year
2539152235078304479 ~1997
2539165692386815748711 ~2001
2539198435078396879 ~1997
253921669609412005710 ~1999
2539298395078596799 ~1997
2539335835078671679 ~1997
2539393691015757476111 ~2000
2539437715078875439 ~1997
2539486315078972639 ~1997
253952551253952551110 ~1998
2539554595079109199 ~1997
253964521152378712710 ~1998
253969271203175416910 ~1998
253974317152384590310 ~1998
2539755835079511679 ~1997
2539813195079626399 ~1997
2539941835079883679 ~1997
2539982635079965279 ~1997
2540007835080015679 ~1997
254005571203204456910 ~1998
2540225395080450799 ~1997
254026841203221472910 ~1998
2540297035080594079 ~1997
254031497152418898310 ~1998
2540360635080721279 ~1997
Exponent Prime Factor Digits Year
2540483395080966799 ~1997
2540526715081053439 ~1997
254056423254056423110 ~1998
254062321152437392710 ~1998
2540626315081252639 ~1997
2540649011168698544711 ~2000
2540695915081391839 ~1997
2540709595081419199 ~1997
254072257152443354310 ~1998
2540811235081622479 ~1997
254085437355719611910 ~1999
254085593152451355910 ~1998
2540984515081969039 ~1997
254106371203285096910 ~1998
2541080515082161039 ~1997
254113397152468038310 ~1998
254114017152468410310 ~1998
2541274315082548639 ~1997
2541467515082935039 ~1997
254158363254158363110 ~1998
2541609115083218239 ~1997
2541645835083291679 ~1997
254170781203336624910 ~1998
2541745795083491599 ~1997
254177321152506392710 ~1998
Home
4.768.925 digits
e-mail
25-05-04