Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2546644915093289839 ~1997
2546659915093319839 ~1997
2546665435093330879 ~1997
2546674435093348879 ~1997
2546746915093493839 ~1997
2546796715093593439 ~1997
2546816995093633999 ~1997
2546822995093645999 ~1997
254685983611246359310 ~1999
254692831254692831110 ~1998
254703833152822299910 ~1998
2547312835094625679 ~1997
254732693152839615910 ~1998
2547521031069958832711 ~2000
2547530995095061999 ~1997
2547553315095106639 ~1997
2547581515095163039 ~1997
2547610435095220879 ~1997
2547611531171901303911 ~2000
2547703315095406639 ~1997
2547781315095562639 ~1997
254779157203823325710 ~1998
2547921595095843199 ~1997
2547929635095859279 ~1997
254793577152876146310 ~1998
Exponent Prime Factor Digits Year
2547992995095985999 ~1997
2548024915096049839 ~1997
2548230595096461199 ~1997
2548288315096576639 ~1997
2548387915096775839 ~1997
2548455115096910239 ~1997
254850031458730055910 ~1999
2548533235097066479 ~1997
2548594315097188639 ~1997
2548719835097439679 ~1997
2548836595097673199 ~1997
2548907395097814799 ~1997
2548927195097854399 ~1997
2549030635098061279 ~1997
2549055595098111199 ~1997
254914531254914531110 ~1998
254920691203936552910 ~1998
2549210395098420799 ~1997
2549239795098479599 ~1997
2549271715098543439 ~1997
2549328835098657679 ~1997
2549349235098698479 ~1997
2549379371988515908711 ~2001
254942581152965548710 ~1998
2549624395099248799 ~1997
Exponent Prime Factor Digits Year
2549651635099303279 ~1997
2549657515099315039 ~1997
2549788915099577839 ~1997
254980373152988223910 ~1998
254980379203984303310 ~1998
2549846515099693039 ~1997
254987141203989712910 ~1998
254994209203995367310 ~1998
255021887204017509710 ~1998
255034123255034123110 ~1998
255037877357053027910 ~1999
2550412911683272520711 ~2000
2550534715101069439 ~1997
255066401153039840710 ~1998
255081059204064847310 ~1998
2550822713060987252111 ~2001
2550834595101669199 ~1997
2550842395101684799 ~1997
2550864235101728479 ~1997
2550922315101844639 ~1997
2550927595101855199 ~1997
2551015315102030639 ~1997
2551058271224507969711 ~2000
2551142395102284799 ~1997
2551184591020473836111 ~2000
Exponent Prime Factor Digits Year
2551216315102432639 ~1997
2551317595102635199 ~1997
2551365595102731199 ~1997
2551380835102761679 ~1997
2551493995102987999 ~1997
2551533835103067679 ~1997
2551590835103181679 ~1997
2551617715103235439 ~1997
2551636315103272639 ~1997
2551713595103427199 ~1997
2551793635103587279 ~1997
2551819195103638399 ~1997
2551969435103938879 ~1997
255206621153123972710 ~1998
2552161915104323839 ~1997
2552170315104340639 ~1997
2552191315104382639 ~1997
2552195515104391039 ~1997
2552222395104444799 ~1997
2552292835104585679 ~1997
2552388715104777439 ~1997
2552412715104825439 ~1997
2552463115104926239 ~1997
255249307255249307110 ~1998
255260053408416084910 ~1999
Home
4.768.925 digits
e-mail
25-05-04